

# SERVICE MANUAL 

## Air Conditioners

MODEL: HSU-07HV03/R2
HSU-09HV03/R2 HSU-12HV03/R2 HSU-18HV03/R2
HSU-22HV03/R2

THIS MANUAL IS USED BY QUALIFIED APPLIANCE TECHNICIANS ONLY. HAIER DOES NOT ASSUME ANY RESPONSIBILITY FOR PROPERTY DAMAGE OR PERSONAL INJURY FOR IMPROPER SERVICE PROCEDURES DONE BY ONE UNQUALIFIED PERSON.

## IMPORTANT INFORMATION



## - Main Specification

-Cooling Capacity : 2300W

- Rated Power/Current(cooling) : 680W/3.0A
- EER: 3.38
-Heating Capacity : 2500W
- Rated Power/Current(heating): 690W/3.1A
- COP: 3.62
- Air Volume(Indoor): $400 \mathrm{~m}^{3} / \mathrm{h}$
- Power: 1PH 220-230V~50 Hz

```
OFeatures
    @ Comfortable: wide-angle airflow
    O health air purifying
    -quiet operation
    Q super energy efficient
- Features
- Comfortable: wide-angle airflow
- health air purifying
- quiet operation
- super energy efficient
```


## IMPORTANT INFORMATION


-Features

- Comfortable: wide-angle airflow
- health air purifying
- quiet operation
- super energy efficient


## - Main Specification

-Cooling Capacity : 3000W

- Rated Power/Current(cooling) : 860W/3.5A
- EER: 3.49
- Heating Capacity : 3000W
- Rated Power/Current(heating): 830W/3.5A
-COP: 3.61
- Air Volume(Indoor): $420 \mathrm{~m}^{3} / \mathrm{h}$
- Power: 1PH 220-230V~ 50 Hz


## - Main Specification

- Cooling Capacity : 4000W
- Rated Power/Current(cooling) : 1200W/5.0A
- EER: 3.33
- Heating Capacity : 4200W
- Rated Power/Current(heating): 1160W/5.8A
- COP: 3.62
- Air Volume(Indoor): $450 \mathrm{~m}^{3} / \mathrm{h}$
- Power: 1PH 220-230V~50 Hz


## IMPORTANT INFORMATION



```
OFeatures
    @ Comfortable: wide-angle airflow
    O health air purifying
    -quiet operation
    Q super energy efficient
```


## - Main Specification

-Cooling Capacity : 5000W

- Rated Power/Current(cooling) : 1555W/6.9A
- EER: 3.22
- Heating Capacity : 5500W
- Rated Power/Current(heating): 1525W/6.8A
-COP: 3.61
- Air Volume(Indoor): $750 \mathrm{~m}^{3} / \mathrm{h}$
- Power: 1PH 220-230V~50 Hz


## IMPORTANT INFORMATION



\author{

- Features <br> - Comfortable: wide-angle airflow <br> - health air purifying <br> - quiet operation <br> - super energy efficient
}


## - Main Specification

-Cooling Capacity : 6000W

- Rated Power/Current(cooling) : 1990W/8.9A
- EER: 3.02
-Heating Capacity: 6500W
- Rated Power/Current(heating): 2020W/9.0A
- COP: 3.22
- Air Volume(Indoor): $750 \mathrm{~m}^{3} / \mathrm{h}$
- Power: 1PH 220-230V~50 Hz


## Safety Information

## General Information

This Service Manual describes the operation, disassembly,troubleshooting, and repair of Haier Room Air Conditioners, etc. It is intended for use by authorized servicers who troubleshoot and repair these units.

NOTE:It is assumed that users of this manual are familiar with the use of tools and equipment used to troubleshoot and repair electrical,mechanical,and refrigeration systems;and understand the terminology used to describe and discuss them.

Haier urges you read and follow all safety precautions and warnings contained in this manual. Failure to comply with safety information may result in severe personal injury or death.

## Related Publications

This is a base service manual,covering a range of similar models.It is intended to be used in conjunction with the Parts Manual and Technical Sheet covering specific model being serviced.

## General Precautions and Warnings

## 4 warning

To avoid risk of personal injury or death due to electrical shock, disconnect electrical power to unit before attempting to service the unit.

## 4 WARNING

To avoid risk of personal injury or death due to electrical shock,DO NOT,under any circumstances,alter the grounding plug. Air conditioner must be grounded at all times. Do not remove warning tag from power cord.If a two-prong (non-grounding) wall receptacle is encountered,contact a qualified electrician and have the receptacle replaced with a properly grounder wall receptacle in accordance with the National Electrical Code.

## 4 WARNING

To avoid risk of personal injury or death due to electrical shock, grounding wires and wires colored like grounding wires are NOT to be used as current carrying conductors. The standard accepted color coding for ground wires is green or green with a yellow stripe. Electrical components such as the compressor and fan motor are grounded through an individual wire attached to the electrical component and to another part of the air conditioner.Grounding wires should not to be removed from individual components while servicing, unless the component is to be removed and replaced.It is extremely important to replace all removed grounding wires before completing service.

## 4 warning

To avoid risk of heat exposure,which may cause death or severe illness,air conditioner must be monitored when malfunctions or shuts down.

## CONIENIS

1. SPEC FI CATI ON ..... 1
2. OPERATI ON ..... 7
3. ELECTRI CAL CONTROLL ..... 33
4. TROUBLE SHOOTI NG ..... 60
5. I NSTALLA TI ON. ..... 62
6. CI RCUI T AND W RI NG DI AGRAM ..... 71

## SPECIFICATION

Haier
Air Conditioner
Edition:2006/1/10


Haier
Air Conditioner
Edition:2006/1/10

| Model: | HSU-09HV03/R2 |  | Brand Mark: |  |  | HAIER |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cooling | Cooling Capacity: | 3000W | Frequency Range: |  |  | 50 Hz |  |  |
|  | Rated Power/Current: | 860W/3.5A | Power |  |  | 1PH | 220-230V~ 50 Hz |  |
|  | Max Power/Current: | 1150W/5.0A | Power Cord | Model×Sectional Area: |  |  | ---- |  |
|  | EER | 3.49 |  |  |  |  |  |  |
| Heating | Heating Capacity: | 3000W |  | Refer. No.: |  |  |  | ----- |
|  | Rated Power/Current: | 830W/3.5A | Compressor manufacturer/Type |  | RECHI/44A233AJ-JEK |  |  |  |
|  | Max Power/Current: | 1500W/6.3A | Compressor <br> Oil charge |  | ---(poe) |  |  |  |
|  | COP | 3.61 |  |  |  |  |  |  |  |  |  |  |  |
| Power/Current of |  | --- | Refrigerant |  | Type/Net Charge: |  |  | R410A 950g |
| Operating temp. range |  | -7.C-43。C |  |  | Additional Charge for exhausting air. |  |  | 0 g |
| Indoor <br> Velocity | H: | 1250 r/min |  |  | Charge if over Standrad Pipe Lenth |  |  | 20g/m |
|  | M: | 1050 r/min | Capilary |  | Lenth×Internal/External Diametre |  |  | 1.4*750+1.4*800 |
|  | L: | 950 r/min |  |  | Refer No.: |  |  | ---- |
| Outdoor Velocity | H: | 850 r/min | Height of rising radiator slice |  | Indoor: |  | ---- | mm |
|  | : | ---- r/min |  |  | Outdoor: |  | ---- | mm |
|  | L: | ---- r/min | Indoor Weight |  | Net: |  |  | 8.6 kg |
|  |  |  |  |  | Gros |  |  | 10.6 kg |
| Air Volume (High) | Indoor: |  | Outdoor Weight |  | Net: |  |  | 31 kg |
|  |  | $420 \quad \mathrm{~m}^{3} / \mathrm{h}$ |  |  | Gros |  |  | 32kg |
|  | Outdoor: | ----- m³/h | Indoor Dimension( $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ): |  |  |  | 778 | *197*250mm |
| Capacitor of Fan Motor: |  | $2.5 \mu \mathrm{~F}$ | indoor Packaging Dimension( $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ) |  |  |  | 865 | *272*330 mm |
| Class of electric Shock Protection |  | I | Outdoor Dimension ( $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ): |  |  |  | 780 | *245*540mm |
| Class of Water Proof: |  | IP 24 | Outdoor Packaging dimension( $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ) |  |  |  | 908 | *342*619 mm |
| Moisture Removal: |  | $1.2 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{h}$ | Refrigerant Pipe | quid /Gas pipe Diametre |  |  | $\varphi 6.35 / 9.52 \mathrm{~mm}$ |  |
| Remote <br> Controller | Model: | YR-H65 |  | standa | ard Len |  |  | 5 m |
|  | R Refer. No.: | 0010401540 |  | Max Len |  |  | 15 | m |
| Remote Controller Bracket: |  | ----- | Lenth/Diametre of Drain Hose |  |  |  |  | MPa |
| Appearance: |  | ----- | Max. pressure at warm side: |  |  |  |  | MPa |
| Climate Type: |  | T1 | Max.pressure at cool side: |  |  |  |  | 4.15MPa |
| Installation Bracket Type: |  | ----- | Plug Type(spec.): |  |  |  |  | --- |
| Area available for clooling/heating |  | 15-23 $\mathrm{m}^{2}$ | Ammeter spec.: |  |  |  |  | --- |
| Max.running temperature(cooling): |  | Dry/Wet ball(indoor): $32 \quad / 23{ }^{\circ} \mathrm{C}$ | Max.running temperature(heating): |  |  | Dry/W | all(in | door) $27^{\circ} \mathrm{C} /--{ }^{\circ} \mathrm{C}$ |
|  |  | Dry/Wet ball(outdoor): $43{ }^{\circ} \mathrm{C} / 26{ }^{\circ} \mathrm{C}$ |  |  |  | Dry/W | all(ou | utdoor): $24^{\circ} \mathrm{C} / 18^{\circ} \mathrm{C}$ |

Haier
Air Conditioner
Edition:2006/1/10

| Model: | HSU-12HV03/R2 |  | Brand Mark: |  |  | HAIER |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cooling | Cooling Capacity: | 4000W | Frequency Range: |  |  | 50 Hz |  |  |
|  | Rated Power/Current: | 1200W/5.0A | Power |  |  | 1PH | 220-230V~ 50 Hz |  |
|  | Max Power/Current: | 1500W/6.0A | Power Cord | Model×Sectional Area: |  |  | ---- |  |
|  | EER | 3.33 |  |  |  |  |  |  |
| Heating | Heating Capacity: | 4200W |  | Refer. No.: |  |  |  | ----- |
|  | Rated Power/Current: | 1160W/5.8A | Compressor manufacturer/Type |  | MEIZHI/PA150X2C-4EN |  |  |  |
|  | Max Power/Current: | 1500W/6.3A | Compressor <br> Oil charae |  | 500(poe) |  |  |  |
|  | COP | 3.62 |  |  |  |  |  |  |  |  |  |  |  |
| Power/Current of |  | --- | Refrigerant |  | Type/Net Charge: |  |  | R410A 950g |
| Operating temp. range |  | -7.C-43。C |  |  | Additional Charge for exhausting air. |  |  | 0 g |
| Indoor <br> Velocity | H: | 1350 r/min |  |  | Charge if over Standrad Pipe Lenth |  |  | 20g/m |
|  | M: | 1200 r/min | Capilary |  | Lenth×Internal/External <br> Diametre |  |  | ----- |
|  | L: | 1150 r/min |  |  | Refer No.: |  |  | ----- |
| Outdoor Velocity | H : | 850 r/min | Height of rising radiator slice |  | Indoor: |  |  | mm |
|  | M: | ---- r/min |  |  | Outdoor: |  |  | mm |
|  | L: | ---- r/min | Indoor Weight |  | Net: |  |  | 8.8 kg |
|  |  |  |  |  | Gros |  |  | 10.6kg |
| Air Volume (High) | Indoor: |  | Outdoor Weight |  | Net: |  |  | 31 kg |
|  |  | $450 \quad \mathrm{~m}^{3} / \mathrm{h}$ |  |  | Gros |  |  | 32kg |
|  | Outdoor: | ----- m³/h | Indoor Dimension( $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ): |  |  |  |  | *182*265 mm |
| Capacitor of Fan Motor: |  | 2.51IF | indoor Packaging Dimension ( $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ) |  |  |  | 865 | *272*330 mm |
| Class of electric Shock Protection |  | I | Outdoor Dimension ( $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ): |  |  |  |  | *245*540mm |
| Class of Water Proof: |  | IP 24 | Outdoor Packaging dimension( $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ) |  |  |  |  | *342*619 mm |
| Moisture Removal: |  | $1.6 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{h}$ | Refrigerant Pipe | liquid /Gas pipe Diametre |  |  | $\varphi 6.35 / 9.52 \mathrm{~mm}$ |  |
| Remote <br> Controller | Model: | YR-H65 |  | standa | ard Len |  |  | 5 m |
|  | R Refer. No.: | 0010401540 |  | Max Len |  |  | 15 | m |
| Remote Controller Bracket: |  | ----- | Lenth/Diametre of Drain Hose |  |  |  |  | MPa |
| Appearance: |  | ----- | Max. pressure at warm side: |  |  |  |  | MPa |
| Climate Type: |  | T1 | Max.pressure at cool side: |  |  |  |  | 4.15 MPa |
| Installation Bracket Type: |  | ----- | Plug Type(spec.): |  |  |  |  | --- |
| Area available for clooling/heating |  | 15-23 $\mathrm{m}^{2}$ | Ammeter spec.: |  |  |  |  | --- |
| Max.running <br> temperature(cooling): |  | Dry/Wet ball(indoor): $32 \quad / 23{ }^{\circ} \mathrm{C}$ | Max.running <br> temperature(heating): |  |  | Dry/W | ball(in | door) $27{ }^{\circ} \mathrm{C} /--{ }^{\circ} \mathrm{C}$ |
|  |  | Dry/Wet ball(outdoor): $43{ }^{\circ} \mathrm{C} / 26{ }^{\circ} \mathrm{C}$ |  |  |  | Dry/W | all(0 | utdoor): $24^{\circ} \mathrm{C} / 18^{\circ} \mathrm{C}$ |

Haier
Air Conditioner
Edition:2006/1/10


Haier
Air Conditioner
Edition:2006/1/10


## OPERATION

## Cautions

Disposal of the old air conditioner
Before disposing an old air conditioner that goes out of use, please make sure it's inoperative and safe. Unplug the air conditioner in order to avoid the risk of child entrapment.

It must be noticed that air conditioner system contains refrigerants, which require specialized waste disposal. The valuable materials contained in an air conditioner can be recycled .Contact your local waste disposal center for proper disposal of an old air conditioner and contact your local authority or your dealer if you have any question. Please ensure that the pipework of your air conditioner does not get damagedprior to being picked up by the relevant waste disposal center, and contribute to environmental awareness by insisting on an appropriate, anti-pollution method of disposal.

Disposal of the packaging of your new air conditioner

All the packaging materials employed in the package of your new air conditioner may be disposed without any danger to the environment.

The cardboard box may be broken or cut into smaller pieces and given to a waste paper disposal service. The wrapping bag made of polyethylene and the polyethylene foam pads contain no fluorochloric hydrocarbon.

All these valuable materials may be taken to a waste collecting center and used again after adequate recycling.

Consult your local authorities for the name and address of the waste materials collecting centers and waste paper disposal services nearest to your house.

## Safety Instructions and Warnings

Before starting the air conditioner, read the information given in the User's Guide carefully. The User's Guide contains very important observations relating to the assembly, operation and maintenance of the air conditioner.

The manufacturer does not accept responsibility for any damages that may arise due to non-observation of the following instruction.

- Damaged air conditioners are not to be put into operation. In case of doubt, consult your supplier.
- Use of the air conditioner is to be carried out in strict compliance with the relative instructions set forth in the User's Guide.
- Installation shall be done by professional people, don't install unit by yourself.
- For the purpose of the safety,the air conditioner must be properly grounded in accordance with specifications.
- Always remember to unplug the air conditioner before openning inlet grill. Never unplug your air conditioner by pulling on the power cord. Always grip plug firmly and pull straight out from the outlet.
- All electrical repairs must be carried out by qualified electricians. Inadequate repairs may result in a major source of danger for the user of the air conditioner.
- Do not damage any parts of the air conditioner that carry refrigerant by piercing or performating the air conditioner's tubes with sharp or pointed items, crushing or twisting any tubes, or scraping the coatings off the surfaces. If the refrigerant spurts out and gets into eyes, it may result in serious eye injuries.


## Cautions

- Do not obstruct or cover the ventilation grille of the air conditoner. Do not put fingers or any other things into the inlet/outlet and swing louver.
- Do not allow children to play with the air conditioner.In no case should children be allowed to sit on the outdoor unit.


## Specifications

- The refrigerating circuit is leak-proof.

The machine is adaptive in following situation
1.Applicable ambient temperature range:

| Cooling | Indoor | Maximum:D.B/W.B $32^{\circ} \mathrm{C} / 23^{\circ} \mathrm{C}$ <br> Minimum:D.B/W.B $18^{\circ} \mathrm{C} / 14^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: |
|  | Outdoor | Maximum:D.B/W.B $43^{\circ} \mathrm{C} / 26^{\circ} \mathrm{C}$ <br> Minimum:D.B $18^{\circ} \mathrm{C}$ |
| Heating | Indoor | Maximum:D.B $27^{\circ} \mathrm{C}$ <br> Minimum:D.B $15^{\circ} \mathrm{C}$ |
|  | Outdoor | Maximum:D.B/W.B $24^{\circ} \mathrm{C} / 18^{\circ} \mathrm{C}$ Minimum:D.B/W.B $\quad-7^{\circ} \mathrm{C} /-8^{\circ} \mathrm{C}$ |

2. If the power supply cord is damaged, it must be replaced by the manufacturer or its service agent or a similar qualified person.
3. If the fuse of indoor unit on PC board is broken, please change it with the type of T. 3.15A/250V.
4. The wiring method should be in line with the local wiring standard.
5. After installation, the power plug should be easily reached.
6. The waste battery should be disposed properly.
7. The appliance is not intended for use by young children or infirm persons without supervision.
8. Young children should be supervised to ensure that they do not play with the applience.
9.Please employ the proper power plug, which fit into the power supply cord.

10 .The power plug and connecting cable must have acquired the local attestation.

## Cautions

## Safety Instruction

- Please read the following Safety Instructions carefully prior to use.
- The instructions are classified into two levels, WARNING and CAUTION according to the seriousness of possible risks and damages as follows. Compliance to the instructions are strictly required for safety use.


## Installation

## $\triangle$ WARNING

Please call Sales/Service Shop for the Installation.
Do not attempt to install the air conditioner by yourself because improper works may cause electric shock, fire, water leakage.

Installation in a inadequate place may cause accidents. Do not install in the following place.


## Cautions

| $\triangle$ WARNING |  |  |  |
| :---: | :---: | :---: | :---: |
|  <br> [B] OFF |  |  |  |
|  | se the pope | (1) | Do not use power supply cord extended or connected in halfway $\theta$ еронетоп |
|  |  |  |  |
|  |  |  |  |



## Parts and Functions

## Indoor unit



For multi-split type, the power plug is on the outdoor unit.

## Outdoor unit


(1) OUTLET
(3) CONNECTING PIPING AND ELECTRICAL WIRING
(2) INLET
(4) DRAIN HOSE

## Parts and Functions



## 1．RESET

When the remote controller appears abnormal， use a sharp pointed article to press this button to reset the remote controller normal．
2．LIGHT button
Control the lightening and extinguishing of the indoor LCD display board．
3．TIMER button
Used to select TIMER ON，TIMER OFF， TIMER ON－OFF．
4．CLOCK button
Used to set correct time．
5．SLEEP button
Used to select sleep mode．
6．MODE button


7．HOUR button
Used to set clock and timer setting．
8．HEALTH button
Used to set healthy operation．
9．ON／OFF button
Used for unit start and stop．


10．TIMER ON display


12．LOCK display
13．SWING UP／DOWN display
14．SLEEP display
15．HEALTH display
16．Operation mode display

| Operation mode | AUTO | COOL | DRY | HEAT | FAN |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Remote controller | $\overrightarrow{1}$ | 桃 | 0 | 漟 | （s） |
| Display board | 5 | 䊑 | $\checkmark$ | 等 |  |

17．Singal sending display
18．Left／right air flow display
19．TEMP display
Remote controller：to display the TEMP．setting．
20．TIMER OFF display
21．TIMER display
22．TEMP button
Used to select your desired temperature．
23．FAN button
Used to select fan speed：LOW，MED，HI，AUTO．
24．HEALTH AIRFLOW button
Used to set the health airflow mode．
25．SWING UP／DOWN button
Used to select up or down air sending direction．
26．SWING LEFT／RIGHT button
Used to select left／right air flow．
27．SET button
Used to confirm timer and clock settings．
28．LOCK
Used to lock buttons and LCD display．If pressed，the other buttons will be disabled and the lock condition display appears．Press it once again，lock will be canceled and lock condition display disappears．
29．Ambient temp．display
When receiving the remote control signal，display the set temperature and in the rest time the room temperature is displayed and this room temperature is only for reference．

## Parts and Functions

## Clock Set

When unit is started for the first time and after replacing batteries in remote controller, clock should be adjusted as follows:

1. Press CLOCK button,"AM" or "PM" flashes.
2. Press $\triangle$ or $\nabla$ to set correct time. Each press will increase or decrease 1 min . If the button is kept depressed, time will change quickly.
3. After time setting is confirmed, press SET, "AM" or "PM" stop flashing, while clock starts working.


- Remote controller's operation
- When in use, put the signal transmission head directly to the receiver hole on the indoor unit.
- The distance between the signal transmission head and the receiver hole should be within 7 m without any obstacle as well.
- Don't throw or knock the remoter controller.
- When electronic-started type fluorescent lamp or change-over type fluorescent lamp or wireless telephone is installed in the room, the receiver is apt to be disturbed in receiving the signals, so the distance to the indoor unit should be shorter.
- Loading of the battery

Load the batteries as illustrated right
2 R-03 (7\#) batteries
Remove the battery cover:
Slightly press" $\overline{\bar{*}}$ "area and push down the cover as illustrated.

Load the battery:
Be sure that the loading is in line with the "+" / "-".
 request as illustrated on the bottom of the case.
Put on the cover again.
Confirmation indicator:
After pressing power ON/OFF, if no display, reload the batteries.
Note:

- Full display or unclear display during operation indicates the batteries have been used up. Please change batteries.
- Used two new same-typed batteries when loading.
- If the remote controller can't run normally during operation, please remove the batteries and reload several minutes later.

Hint:
Remove the batteries in case unit won't be in usage for a long period. If there are any display after taking-out, just need to press reset key.

Air Conditioner

## Operation

## HEALTH operation



Remote controller

1.Unit start

Press ON/OFF on the remote controller, unit starts.
2. Health anion function

Press HEALTH button. For each press, $\overline{0}$ is displayed.
Air conditioner starts health anion function operation.
For twice press, disappears,the operation stops.

When indoor fan motor is running, it has healthy process function. (It's available under any mode)
When the fan in the indoor unit does not work, the health lamp lights up, but the anion generator does not release anion.

BRIEF INTRODUCTION TO HEALTH ANION FUCTION
The anion generator in the air conditioner can generate a lot of anion effectively balance the quantity of position and anion in the air and also to kill bacteria and speed up the dust sediment in the room and finally clean the air in the room.

## Operation

## Auto Operation



Remote controller


1. Unit start

Press ON/OFF on the remote controller, unit starts.
2.Select operation mode

Press MODE button. For each press, operation mode changes as follows:
Remote controller:


Then
Select Auto operation
On the displaying board,colorful displaying bar will be white.
3. Select temp.setting

Press TEMP. button
$\triangle$ Every time the button is pressed, temp.setting increase $1^{\circ} \mathrm{C}$, if kept depressed, it will increase rapidly
$\nabla$ Every time the button is pressed, temp.setting decrease $1^{\circ} \mathrm{C}$,if kept depressed, it will decrease rapidly
Select a desired temperature.
4.Fan speed selection

Press FAN button. For each press, fan speed changes as follows:
Remote controller:


Air conditioner is running under displayed fan speed. When FAN is set to AUTO, the air conditioner automatically adjusts the fan speed according to room temperature.
5.Unit stop

Press ON/OFF button, the unit stops.
About Auto Operation
Under the mode of auto operation, air conditioner will automatically select Cool or Heat operation according to room temperature.

## Operation

## Cool Operation

$\square$

Remote controller

1. Unit start

Press ON/OFF on the remote controller, unit starts.

## 2.Select operation mode

Press MODE button. For each press, operation mode changes as follows:
Remote controller:


Then
Select COOL operation
On the displaying board,colorful displaying bar will be blue.
3.Select temp.setting

Press TEMP. button
$\triangle$ Every time the button is pressed, temp.setting increase $1^{\circ} \mathrm{C}$,if kept depressed, it will increase rapidly
$\nabla$ Every time the button is pressed, temp.setting decrease $1^{\circ} \mathrm{C}$, if kept depressed, it will decrease rapidly
Select a desired temperature.
4.Fan speed selection

Press FAN button. For each press, fan speed changes as follows:
Remote controller:


Air conditioner is running under displayed fan speed. When FAN is set to AUTO, the air conditioner automatically adjusts the fan speed according to room temperature.
5.Unit stop

Press ON/OFF button, the unit stops.

## Operation

## Dry Operation

## 1. Unit start

Press ON/OFF on the remote controller, unit starts.
2.Select operation mode

Press MODE button. For each press, operation mode changes as follows:
Remote controller:


Then

```
Select DRY operation
```

On the displaying board,colorful displaying bar will be light blue

## 3.Select temp.setting

Press TEMP. button
$\triangle$ Every time the button is pressed, temp.setting increase $1^{\circ} \mathrm{C}$, if kept depressed, it will increase rapidly
$\nabla$ Every time the button is pressed, temp.setting decrease $1^{\circ} \mathrm{C}$, if kept depressed, it will decrease rapidly
Select a desired temperature.
4.Fan speed selection

Press FAN button. For each press, fan speed changes as follows:
Remote controller:


Air conditioner is running under displayed fan speed. In DRY mode, when room temperature becomes lower than temp.setting $+2^{\circ} \mathrm{C}$, unit will run intermittently at LOW speed regardless of FAN setting.
5.Unit stop

Press ON/OFF button, the unit stops.

## Operation

## Fan Operation

## $2 \mathrm{LH}_{1} \mathrm{c}$

Remote controller


1. Unit start

Press ON/OFF on the remote controller, unit starts.
2. Select operation mode

Press MODE button. For each press, operation mode changes as follows:
Remote controller:


Then Select FAN operation
On the displaying board, colorful displaying bar will be pink.
3.Fan speed selection

Press FAN button. For each press, fan speed changes as follows:
Remote controller
4.Unit stop

Press ON/OFF button, the unit stops.

About FAN operation
In FAN operation mode, the unit will not operate in COOL or HEAT mode but only in FAN mode ,AUTO is not available in FAN mode.And temp.setting is disabled. In FAN mode,SLEEP operation is not available.

## Operation

## Heat Operation



Remote controller


1. Unit start

Press ON/OFF on the remote controller, unit starts.
2.Select operation mode

Press MODE button. For each press, operation mode changes as follows:
Remote controller:


Then

## Select HEAT operation

On the displaying board,colorful displaying bar will be red
3.Select temp.setting

Press TEMP. button
$\triangle$ Every time the button is pressed, temp.setting increase $1^{\circ} \mathrm{C}$,if kept depressed, it will increase rapidly
$\nabla$ Every time the button is pressed, temp.setting decrease $1^{\circ} \mathrm{C}$, if kept depressed, it will decrease rapidly
Select a desired temperature.
4.Fan speed selection

Press FAN button. For each press, fan speed changes as follows:
Remote controller:


Air conditioner is running under displayed fan speed IN HEAT mode, warm air will blow out after a short period of the time due to cold-draft prevention function.
When FAN is set to AUTO, the air conditioner automatically adjusts the fan speed according to room temperature.
5.Unit stop

Press ON/OFF button, the unit stops.

## Operation

## Air Flow Direction Adjustment

1．Status display of air sending


| Vertical flap | Horizontal louvers |
| :---: | :---: |
| Pos． $1{ }^{-}$ | Pos． $1 \underset{\square}{\text { ¢ }}$ |
| Pos． 2 － | Pos． $2 \stackrel{\text { a }}{\text { 全 }}$ |
| Pos． 3 「 | Pos． 3 |
| Pos． 4 Г | Pos． $4 \stackrel{\square}{\square}$ |
| Pos． 5 | Pos． $5 \stackrel{\text { ¢ }}{\text { ¢ }}$ |
| Pos． 6 㛵（Auto swing） | Pos． 6 ٪ |
|  | Pos． 7 \＃ |
|  | Pos． 8 気 |

2．Up and down air flow direction
For each press of button，air flow direction on remote controller displays as follows according to different operation modes：
COOL／DRY／FAN
remote controller：$\rightarrow$ Pos． $1 \rightarrow$ Pos． $2 \rightarrow$ Pos． $3 \rightarrow$ Pos． $4 \rightarrow$ Pos． 6

## HEAT：

remote controller：$\rightarrow$ Pos． $5 \rightarrow$ Pos． $4 \rightarrow$ Pos． $3 \rightarrow$ Pos． $2 \rightarrow$ Pos． $1 \rightarrow$ Pos． 6
AUTO：
remote controller：$\rightarrow$ Pos． $1 \rightarrow$ Pos． $2 \rightarrow$ Pos． $3 \rightarrow$ Pos． $4 \rightarrow$ Pos． $5 \rightarrow$ Pos． 6
The vertical flap will swing according to the above positions
3．Left and right air flow direction
For each press of $\Leftrightarrow$ button，remote controller displays as follows ： remote controller：

```
~Pos.1 Pos. 2-> Pos. }3->\mathrm{ Pos. }4->\mathrm{ Pos. }5->\mathrm{ Pos. }6->\mathrm{ Pos. }7->\mathrm{ Pos. }
```

The horizontal louvers will swing according to the above positions．
Note：When restart after remote turning off，the remote controller will automatically memorize the previous set swing position．

Air Conditioner

## Operation

## Sleep Operation

Before going to bed, you can simply press the SLEEP button and unit will operate in SLEEP mode and bring you a sound sleep.

## Use of SLEEP function

After the unit starts, set the operation status, then press SLEEP button before which the clock must be adjusted and time being set.

## Operation Mode

1. In COOL,DRY mode

1 hours after SLEEP mode starts, temp. will become $1^{\circ} \mathrm{C}$ higher than temp. setting. After another 1 hours, temp. rises by $1^{\circ} \mathrm{C}$ further. The unit will run for further 6 hours then stops. Temp. is higher than temp. setting so that room temperature won't be too low for your sleep.


2. In HEAT mode

1 hours after SLEEP mode starts, temp will become $2^{\circ} \mathrm{C}$ lower than temp. setting. After another 1 hours, temp decrease by $2 \mathrm{O}_{\mathrm{C}}$ further. After more another 3 hours, temp. rises by $1^{\circ} \mathrm{C}$ further. The unit will run for further 3 hours then stops. Temp. is lower than temp. setting so that room temperature won't be too high for your sleep.

3. In AUTO mode

The unit operates in corresponding sleep mode adapted to the automatically selected operation mode.
4. In FAN mode

It has no SLEEP function.
5. Set the wind speed change when sleeping If the wind speed is high or middle before setting for the sleep, set for lowing the wind speed after sleeping.
If it is low wind, no change.
6.Note to the compensation for the power out: press the sleep button ten times in five seconds and enter this function after hearing four sounds. And press the sleep button ten times within five seconds and leave this function after hearing two sounds.
NOTE: With the power-out compensation, when setting the TIMER ON, TIMER OFF and TIMER ON/OFF, itís memorized as shutdown status when resuming after power out.

## Operation



Set clock correctly before starting TIMER operation.

1. After unit starts, select your desired operation mode Operation mode will be displayed on LCD.
2. Timer mode selection

Press TIMER button to change TIMER mode. Every time the button is pressed, display changes as follows: Remote controller:


Then select your desired TIMER mode (TIMER ON or TIMER OFF). " ON "or " OFF "will flash.
3.Time setting

Press HOUR $\triangle / \nabla$ button.
$\triangle$ Every time the button is pressed, time setting increases 1 min , if kept depressed, it will increase rapidly.
$\nabla$ Every time the button is pressed, time setting decreases 1 min , if kept depressed, it will decrease rapidly.
It can be adjusted within 24 hours.
4.Confirming your setting

After setting correct time, press SET button to confirm
" ON "or" OFF "on the remote controller stops flashing. Time displayed: Unit starts or stops at $x$ hour $x$ min. (TIMER ON or TIMER OFF).
5.Cancel TIMER mode

Just press TIMER button several times until TIMER mode disappears.

Hints:
After replacing batteries or a power failure happens, time setting should be reset. Remote controller possesses memory function, when use TIMER mode next time, just press SET button after mode selecting if time setting is the same as previous one.

## Operation

## Timer On-Off Operation

## ( 234



Set clock correctly before starting TIMER operation.

1. After unit starts, select your desired operation mode Operation mode will be displayed on LCD.
2. Timer mode selection

Press TIMER button to change TIMER mode. Every time the button is pressed, display changes as follows:
Remote controller:


Then select your desired TIMER mode (TIMER ON - OFF).
" ON"will flash.
3.Time setting

Press HOUR $\triangle / \nabla$ button.
$\triangle$ Every time the button is pressed, time setting increases 1 min , if kept depressed, it will increase rapidly.
$\nabla$ Every time the button is pressed, time setting decreases 1 min , if kept depressed, it will decrease rapidly. It can be adjusted within 24 hours.
4. Timer confirming for TIMER ON

After setting correct time, press TIMER button to confirm
" ON " on the remote controller stops flashing.
" DFF " starts flashing.
Time displayed: Unit starts or stops at x hour x min.
5.Time setting for TIMER OFF

Just press HOUR button ,follow the same procedure in
"Time setting for TIMER ON"
6. Time confirming for TIMER OFF

After time setting, press SET button to confirm.
" OFF " on the remote controller stops blinking.
Time displayed:Unit stops at $x$ hour $x$ min.
To cancel TIMER mode
Just press TIMER button several times until TIMER de disappears.
According to the Time setting sequence of TIMER ON or TIMER OFF, either Start-Stop or Stop-Start can be achieved.

## Operation

## Health airflow Operation



## 1.Press ON/OFF to starting

The liquid crystal will display the working state of last time (Except timer, sleeping, power/soft and health airflow). Setting the comfort work conditions.
2. The setting of health airflow function
1).Press the button of health airflow, $\sqrt{*}$ appears on the display. The nether inlet and outlet grills of the air conditioner are closed and the airflow is blown horizontally from the above inlet and outlet grills. Avoid the strong airflow blows direct to the body.
2). Press the button of health airflow again, 后 appears on the display. The above inlet and outlet grills of the air conditioner are closed and the airflow is blown vertically from the nether inlet and outlet grills. Avoid the strong airflow blows direct to the body.

## 3.The cancel of the health airflow function

Press the button of health airflow again, both the inlet and outlet grills of the air conditioner are opened, and the unit goes on working under the condition before the setting of health airflow function.
After stopping, the outlet grille will close automatically. Notice: Cannot pull direct the outlet grille by hand. Otherwise, the grille will run incorrectly. If the grille is not run correctly, stop for a minute and then start, adjusting by remote controller.

Note:
1.After setting the health airflow function, the position of inlet and outlet grills is fixed.
2. In heating, it is better to select the ri mode.
3.In cooling, it is better to select the ${ }^{\text {F }}$ mode.
4. In cooling and dry, using the air conditioner for a long time under the high air humidity, a phenomenon falling drips of water occurs at the outlet grille .
5.Select the appropriate fan direction according to the actual conditions.

## Operation

## Emergency and Test Operation

## Emergency operation:

- Use this operation only when the remote controller is defective or lost.
- When the emergency operation switch is pressed,the" Pi "sound is heard once, which means the start of this operation.
- In this operation, the system automatically selects the operation modes, cooling or heating, according to the room temperature.

| Temperature | Operation <br> mode | Designated <br> temperature | Timer <br> mode | Air flow |
| :--- | :---: | :---: | :---: | :--- |
| ABOVE $21^{\circ} \mathrm{C}$ | COOLING | $24^{\circ} \mathrm{C}$ | NO | AUTOMATIC |
| BELOW $21^{\circ} \mathrm{C}$ | HEATING | $24^{\circ} \mathrm{C}$ | NO | AUTOMATIC |



- It is not possible to operate in dry mode.


## Test operation:

Test operation switch is the same as emergency switch.

- Use this switch in the test operation when the room temperature is below $16^{\circ} \mathrm{C}$, do not use it in the normal operation.
- Continue to press the test operation switch for more than 5 seconds. After you hear the "Pi" sound twice, release your finger from the switch: the cooling operation starts with the air flow speed "Hi".
- After 30 minutes, test operation ends automatically.



## Removal of the restriction of emergency or test operation

- Press the emergency operation switch once more, or manipulate through the remote controller; the " Pi " sound, the emergency or test operation is terminated.
- When the remote controller is manipulated, it gets the system back to the normal operation mode.


## Maintenance

## For Smart Use of The Air Conditioner



## Maintenance

## For Smart Use of The Air Conditioner

## WARNING

Before maintenance,be sure to turn off the system and the circuit breaker.

Remote Controller


Do not use water, wipe the controller with a dry cloth.Do not use glass cleaner or chemical cloth.


Wipe the air conditioner by using a soft and dry cloth.For serious stains, use a neutral detergent diluted with water.Wring the water out of the cloth before wiping.then wipe off the detergent completely.

## Do not use the following for cleaning



Gasoline,benzine, thinner or cleanser may damage the coating of the unit.


Hot water over $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ may cause discoloring or deformation.

## Air Filter cleaning

1 Open the inlet grille by pulling it upward.
2 Remove the filter.
Push up the filter's center tab slightly until it is released from the stopper, and remove the filter downward.


3 Clean the filter.
Use a vacuum cleaner to remove dust, or wash the filter with water.After washing, dry the filter completely in the shade.
4 Attach the filter.
Attach the filter correctly so that the "FRONT" indication is facing to the front.Make sure that the filter is completely fixed behind the stopper. If the right and left filters are not attached correctly, that may cause defects.


5 Close the inlet grille.

## Maintenance

## Replancement of Air Purifying Filter

## 1.Open the Inlet Grille

Open the inlet grille by pushing each ends of the inlet grille upward. (use thumbs to push up)
2.Detach the standard air filter

Slide the knob slightly upward to release the filter, then withdraw it.

## 3.Attach old Air Purifying Filter

Put air purifying filter appliances into the right and left filter frames.


## 4.Attach the standard air filter (Necessary installation)

5.Close the Inlet Grille

Close the Grille surely

## NOTE:

Note: the bacteria-killing mediums placed on the left side. the multi-lights touching intermediary is placed on the right side.


- The photocatalyst air purifying filter and the bacteria-killing medium air purifying filter will be used based on real situation.
- The photocatalyst air purifying filter will be solarized in fixed time. In normal family, it will be solarized every 6 months. The solarization time will last no less than 8 hours under the state of abundant sun.
- The bacteria-killing medium air purifying filter is available for a long time and neednít to be changed. But it must be noticed to use the vacuum cleaner frequently to adsorb the dusts covering the purifying filter lest the covering dusts effect the function of the bacteria-killing medium air purifying filter. (It is strictly prohibited for the bacteria-killing medium air purifying filter to be washed)
- The green aspect of the bacteria-killing medium air purifying filter will face outside, the white aspect will face to the machine.


## Maintenance

## To Keep Your Air conditioner in Good Condition after Season.

## 1 Operate in cooling mode for 2-3 hours.

To prevent breeding mold or bad smell, be sure to operate at the designated temperature or $30^{\circ} \mathrm{C}$,cooling mode and High speed fan mode for 2-3 hours.

2 Put off the power supply cord.


3 Cleaning the body.


4
Take out the batteries from the wireless remote controller.

## Maintenance

## Before Setting in High season

1 Cleaning the standard air filter.
Operation without filter may cause troubles.Be sure to attach both right and left filters prior to the operation. Each of them are of different shapes.
2 Connecting the earthing cable.

## $\triangle$ Caution

- Incomplete earthing may cause an electric shock.


3 Do not block the air inlet or outlet.


## 4 Plug-in



## Trouble shooting

Before asking for service, check the following first.

|  | Phenomenon | Cause or check points |
| :---: | :---: | :---: |
| Normal Performance inspection | The system does not restart immediately. | - When unit is stopped, it won't restart immediately until 3 minutes have elapsed to protect the system. <br> - When the electric plug is pulled out and reinserted, the protection circuit will work for 3 minutes to protect the air conditioner. |
|  | Noise is heard: | - During unit operation or at stop, a swishing or gurgling noise may be heard. At first 2-3 minutes after unit start, this noise is more noticeable. (This noise is generated by refrigerant flowing in the system.) <br> - During unit operation, a cracking noise may be heard. This noise is generated by the casing expanding or shrinking because of temperature changes. <br> - Should there be a big noise from air flow in unit operation, air filter may be too dirty. |
|  | Smells are generated. | - This is because the system circulates smells from the interior air such as the smell of furniture, cigarettes. |
|  | Mist or steam are blown out. | - During COOL or DRY operation, indoor unit may blow out mist. This is due to the sudden cooling of indoor air. |
| Multiple check | Does not work at all. | - Is power plug inserted? <br> - Is there a power failure? <br> - Is fuse blown out? |
|  | Poor cooling | - Is the air filter dirty? Normally it should be cleaned every 15 days. <br> - Are there any obstacles before inlet and outlet? <br> - Is temperature set correctly? <br> - Are there some doors or windows left open? <br> - Is there any direct sunlight through the window during the cooling operation?(Use curtain) <br> - Are there too much heat sources or too many people in the room during cooling operation? |

## ELECTRICAL CONTROLL

2. Run mode:(Tr: inlet air temperature,Ts : the set temperature)
2.1 automatic run mode

The background lighting of the LCD is white

## 1) cooling only type automatic run mode:

When the system runs under "automatic" mode for the first time, it will determine the operating mode according to the follows,
$\mathrm{Tr} \geq \mathrm{Ts}+3^{\circ} \mathrm{C} \quad$ Choose Cooling mode
$\mathrm{Tr}<\mathrm{Ts}-3^{\circ} \mathrm{C} \quad$ Choolse Blowing Mode
The system will shift its operating mode between the above mentioned two to changes of the indoor temperature. If the system is currently under cooling mode, it will switch to blowing mode when $\mathrm{Tr}<\mathrm{Ts}-3^{\circ} \mathrm{C}$; if the system is currently under blowing mode, it will in turn switch to cooling mode when $\mathrm{Tr}>\mathrm{Ts}+3^{\circ} \mathrm{C}$. The switching mode as below,

## 2) cold/warm type run mode:

When the system runs under "automatic" mode for the first time, it will determine the operating mode according to the follows,

| $\mathrm{Tr} \geq \mathrm{Ts}-3^{\circ} \mathrm{C}$ | Choose Cooling Mode |
| :---: | :---: |
| $\mathrm{Tr}<\mathrm{Ts}-3^{\circ} \mathrm{C}$ | Choose Heating Mode |

The system will shift its operating mode between the above mentioned two to changes of the indoor temperature. If the system is currently under cooling mode, the compressor will stop functioning if the temperature lowers to such a degree that requires so; then it will recheck the temperature 15 minutes later: it will switch to the heating mode if the temperature is $\mathrm{Tr}<\mathrm{Ts}-3^{\circ} \mathrm{C}$, or it will still stay in cooling mode(including blowing mode). if the system is currently under heating mode, the compressor will stop running if the temperatur lowers to such a degree that requires so, then it will recheck teh temperatur 15 minutes later: it will switch to the cooling mode if the temperature is $\mathrm{Tr}>\mathrm{Ts}+3^{\circ} \mathrm{C}$.

### 2.2 Cooling run mode: (Tr: inlet air temperature,Ts : the set temperature)

The background lighting of the LCD is blue
Temperature control range : $16^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$
Temperature control precision: $\pm 1^{\circ} \mathrm{C}$
Compressor can't be controlled by temperature sensor within 2 minutes after it starts.
Control character: when $\mathrm{Tr}>\mathrm{Ts}$, outdoor fan motor and compressor on, and indoor fan motor run at fixed wind speed. When $\mathrm{Tr}<\mathrm{Ts}$, outdoor fan motor and compressor off, and when $\mathrm{Tr}>\mathrm{Ts}$, outdoor fan motor and compressor are working again.

If $\mathrm{Tr}=\mathrm{Ts}$, the indoor fan motor, outdoor fan motor and the compressor's state will not change.
wind speed control: (the temperature difference is $1^{\circ} \mathrm{C}$ )
auto: when $\mathrm{Tr}>=\mathrm{Ts}+3^{\circ} \mathrm{C}$, the wind speed is high;
when $\mathrm{Ts}+1^{\circ} \mathrm{C} \leq \operatorname{Tr}<\mathrm{Ts}+3^{\circ} \mathrm{C}$, the wind speed is medium.
When $\mathrm{Tr}<\mathrm{Ts}+1^{\circ} \mathrm{C}$, the wind speed is low.
When temperature sensor is off, the fan motor runs at low speed.
when the wind speed changes from low to higher, there is no delay, and when it changes from high to lower, there is a 3-minutes delay before conversion.
Manual operation: When unit is on the wind speed can be set to high, medium, low or automatic as required (execute instruction 2 seconds later after receiving remote signal)
compressor control : The compressor can't be controlled by temperature sensor within 2 minutes after startup and can be only restarted at least 3 minutes later after shutdown. There is no 3-minute protection with power on for the first time (over 3 minutes with power off). The compressor stands by for 3 minutes before it is restarted after shutdown.
There is no 2-minute limit when changing the temperature setting or shutting down the machine through the remote controller, and the machine can be shut down immediately.
Avoiding electrical shock: outdoor fan motor is available 2 seconds later after the compressor startup.
Controlling the position of air door: set the position of air door as required.
Protection of expiration of current peak value is available: Current cross detection is available in order to avoid burning out the compressor when the current is too big. The action character as follows: The compressor can't be detected in 60 seconds after startup. when current is above "CT 1.6 V " and lasts 3 seconds, the system enter protection mode and shut off compressor with outdoor air blower and indoor fan motor controlled as the temperature sensor is off. After 3 minutes the machine can be started again.
Protection of frost is available (disable in test run or heating mode): In order to prevent the indoor heat exchanger from freezing (in refrigation or dehumidifying mode), the compressor will be shut off when the temperature of the indoor coil pipe is or below $0^{\circ} \mathrm{C}$ and the compressor runs for over 5 minutes. When the temperature of the indoor coil pipe ascends to over $7^{\circ} \mathrm{C}$, the compressor is restarted (must meet a 3-minutes delay)
Timer on, Timer off and sleep control are available.

### 2.3 Dehumidifying mode: ( Tr : inlet air temperature,Ts : the set temperature)

The background lighting of the LCD is aquamarine blue
Temperature control range : $16^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$
Temperature control precision: $\pm 1^{\circ} \mathrm{C}$
control character:

- When Tr (indoor temperature) $>\mathrm{Ts}$ (temperature setting) $+2^{\circ} \mathrm{C}$, compressor and outdoor fan motor run continuosly with indoor fan motor runnig in accordance with the wind speed setting.
- When Tr ranges from Ts to $\mathrm{Ts}+2^{\circ} \mathrm{C}$, outdoor fan motor and compressor are on for 10 minutes and off for 6 minutes, the indoor fan motor is off in 3 minutes after shutdown of compressor and gives breeze in other time.
- When $\mathrm{Tr}<\mathrm{Ts}$, outdoor fan motor and compressor are unavailable, and the indoor fan motor enter breeze mode 3 minutes later after shut down of compressor.
- When all the ranges alternate, there is $\pm 1^{\circ} \mathrm{C}$ difference.

Wind speed control:
Automation: When $\mathrm{Tr}>=\mathrm{Ts}+5^{\circ} \mathrm{C}$, the wind speed is high.
When $\mathrm{Ts}+3^{\circ} \mathrm{C} \leq \mathrm{Tr}<\mathrm{Ts}+5^{\circ} \mathrm{C}$, the wind speed is medium.
When $\mathrm{Ts}+2^{\circ} \mathrm{C} \leq \mathrm{Tr}<\mathrm{Ts}+3^{\circ} \mathrm{C}$, the wind speed is low.
When $\mathrm{Ts} \leq \mathrm{Tr}<\mathrm{Ts}+2^{\circ} \mathrm{C}$, the machine gives breeze intermittently.
When $\mathrm{Tr}<\mathrm{Ts}$, the indoor fan motor is shut off. in 3 minutes
When $\mathrm{Tr}<\mathrm{Ts}$, the machine gives breeze after 3 minutes
Manual operation: When the temperation sensor is off or the Indoor fan motor runs intermittently, the indoor fan motor can not be operated by hand (compelling automatic operation), along with
the indoor fan motor can be operated in cooling mode. While controlling fan motor by hand in cooling mode, the cooling ranges include wind speed setting and refriferation range, others are the same as fan motor in automation mode.
compressor control : The compressor can't be controlled by temperature sensor in 2 minutes after startup and also can't be started again at least 3 minutes later after shutdown. There are 3-minutes protection with power on for the first time (over 3 minutes with power off). The compressor must be started again 3 minutes later after shutdown.
There is no 2-minutes limit when changing the temperature setting or shutting off the machine through the remote controller, and the machine can be shut down immediately.
Avoiding electrical shock: outdoor fan motor is available 2 seconds later after compressor startup.
Controlling the position of air door: set the position of air door as required.
Protection of expiration of current peak value is available: Current cross detection is available in order to avoid burning out the compressor when the current is too big. The action character as follows:

The compressor can't be detected in 60 seconds after startup. when current is above "CT 1.6 V " and lasts 3 seconds, the system enter protection mode and shut off compressor with outdoor air blower and indoor fan motor controlled as the temperature sensor is off. After 3 minutes the machine can be started again.
Protection of frost is available (disable in test run or heating mode): In order to prevent the indoor heat exchanger from freezing (in refrigation or dehumidifying mode), the compressor will be shut off when the temperature of the indoor coil pipe is or below $0^{\circ} \mathrm{C}$ and the compressor runs for over 5 minutes. When the temperature of the indoor coil pipe ascends to over $7^{\circ} \mathrm{C}$, the compressor is restarted (must meet a 3-minutes delay)
Timer on, Timer off and sleep control are available.
2.4 Heating mode: ( Tr : inlet air temperature,Ts : the set temperature)

The background lighting of the LCD is red
Temperature control range : $16^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$
Temperature control precision: $\pm 1^{\circ} \mathrm{C}$
Control Character:
When $\mathrm{Tr} \leq \mathrm{Ts}$, compressor, four-ways valve and outdoor fan motor is on, indoor fan motor runs as in cold blast avoidance mode, and $4^{\circ} \mathrm{Cof}$ compensation is added after compressor is started.
When $\mathrm{Tr}>\mathrm{Ts}+5^{\circ} \mathrm{C}$, compressor is off, and the indoor fan motor runs as in cold blast avoidance mode.
When $\mathrm{Tr}<\mathrm{Ts}+5^{\circ} \mathrm{C}$, compressor, four-ways valve and outdoor fan motor is on, and the indoor fan motor runs as in the mode of avoiding cold blast.
Control of indoor fan motor:
Manual operation: The wind speed can be set to high, medium, low or automatic as required.
Automatic operation: When $\mathrm{Tr}<\mathrm{Ts}$, the wind speed is high;
When $\mathrm{Ts}=<\mathrm{Tr}<\mathrm{Ts}+2^{\circ} \mathrm{C}$, the wind speed is medium.
When $\mathrm{Tr}>=\mathrm{Ts}+2^{\circ} \mathrm{C}$, the wind speed is low.
Control of air door: setting the position of air door as required.
compressor control : The compressor can't be controlled by temperature sensor in 2 minutes after startup and also can't be started again at least 3 minutes later after shutdown. There are 3-minute protection with power on for the first time (over 3 minutes with power off). The compressor must
be started again 3 minutes later after shutdown.
There is no 2 -minutes limit when changing the temperature setting or shutting off the machine through the remote controller, and the machine can be shut down immediately.
Avoiding electrical shock: outlet air is available 2 seconds later after startup.
Timer on, Timer off and sleep control are available.
Control of 4-way valve: When the unit is started for the first time, the 4-way valve starts runnig 10 seconds earlier than compressor does. After compressor stops runnig, the 4 -way valve continues running for 2 minutes and 30 seconds then stops. If changing the unit from heating to cooling, the 4-way valve is shut off 2 minutes later and compressor is started 3 minutes later.
Cold blast avoidance mode:
(1)Compressor is interrupted during the defrosting operation and continues to run after defrosting is completed. When the indoor exchanging temperature is below $23^{\circ} \mathrm{C}$, the indoor fan motor is off. When the indoor exchanging temperature is above $23^{\circ} \mathrm{C}$, the indoor fan motor is running at weak speed.
(2)If the temperature of coil pipe can't be above $38^{\circ} \mathrm{C} 4$ minutes later after startup, fan motor is running at the preset wind speed.
(3) If the temperature of coil pipe is above $38^{\circ} \mathrm{C}$ in 4 minutes after start up, fan motor is running at the preset wind speed immediately.
(4)If coil pipe descends to the temp. lower than $38^{\circ} \mathrm{C}$ from $38^{\circ} \mathrm{C}$. fan motor still running at the preset wind speed.
(5)If the temperature sensor is off. Compressor stops runnig. If the temperature of coil pipe is above $23^{\circ} \mathrm{C}$, fan motor enter breeze mode; and if the temperature of coil pipe is below $20^{\circ} \mathrm{C}$, fan motor stops running.
(6)Shut down the unit and indoor fan motor stops running.

High temperature protection and high temperature expiration protection:

- High temperature prevention: When the temp. of coil pipe is above $64^{\circ} \mathrm{C}$, the outdoor fan motor stops. When the temp descends to $60^{\circ} \mathrm{C}$, the outdoor fan motor is restarted and fan speed invertage frequence is more than 45 seconds. High temperature expiration prevention: When the temp. of coil pipe is above $73^{\circ} \mathrm{C}$, compressor and outdoor fan motor stop running 2 seconds later, and inlet air runs as the temp. sensor is off. When compressor stands by for 3 minute and the temp. of coil pipe is below $64^{\circ} \mathrm{C}$, the unit can be started again.
Current protection and current expiration protection: (Not detecting within 60 seconds after startup)
- Current protection: If current detected is above (HSU-12HV03/R2:5.8A;HSU-09HV03/R2:4.5A;HSU-07HV03/R2:4.2A) and lasts 10 senconds continuously, outlet air stops. If current detected is below (HSU-12HV03/R2:5.2A;HSU-09HV03/R2:4.2A;HSU-07HV03/R2:3.8A) , outlet air is regained 。 Current peak expiration protection: If current detected is above (HSU-12HV03/R2:9.5A;HSU-09HV03/R2:8.5A;HSU-07HV03/R2:8.5A), 3 seconds later the system enter current cross protection, compressor and air outlet stop and start again 3 minuts later, and air inlet runs as the temperature sensor is off.(different mode has the different CT value)
Overcooling protection:
One and a half minute later after compressor starts, if the temperature of coil pipe is below $-4^{\circ} \mathrm{C}$, compressor and air outlet stop, and air inlet runs according to the temp. setting. Compressor can be
restarted 3 minutes later.
Defrosting:
1.Entry conditions of defrosting:
A. Indoor unit enter overload protection and air outlet stops when air outlet has been restarted and runs over 10 minutes, and compressor runs over 45 minutes in total and over 20 minutes continuously, and the temp. of indoor coil pipe is below $38^{\circ} \mathrm{C}$.
B. Compressor runs 20 minutes continuously, and the temp. of indoor coil pipe decreases $1^{\circ} \mathrm{C}$ per 6 minutes and this operation repeats 3 times, and the temp. of coil pipe is below $38^{\circ} \mathrm{C}$, then 5 minutes later . the system enters defrosting mode.
C. When compressor runs over 3 hours in total and over 20 minutes continuously and after the temp. of indoor coil pipe is below $38^{\circ} \mathrm{C}$, the system enters defrosting mode.
D. The difference between the temp. of indoor coil pipe and the indoot temp. is below $16^{\circ} \mathrm{C}$ and lasts 5 minutes, compressor runs over 45 minutes in total and over 20 minutes continuously, the temp. of indoor coil pipe is below $38^{\circ} \mathrm{C}$, the system enters defrosting mode.
2.Exit conditions of defrosting:

Defrosting time is higher than 12 minutes (compressor is on), or CT current is above (8.5A).

- During the defrosting, if current peak value is cut off, the unit quit the defrosting mode. But the protection of expiration of current peak value is unavailable with 60 senconds after compressor is started.
- During the defrosting and 2 minutes after the defrosting, abnormality of temp. sensor isn't detected.
- After quiting the defrosting mode, the fan motor enter cooling prevention mode.
3.Defrosting oscillogram:


Automatic temperature compensation of heating:

1. Conditions: Halt time of compressor is below 5 minutes.
2. Operation rules: 1) $\mathrm{Ts}=\mathrm{Tr}+5^{\circ} \mathrm{C}+(\mathrm{Tr}-\mathrm{Td}$ (temperature detected)[the moment of startup])
2) $\mathrm{Tr}-\mathrm{Td}$ [the moment of startup] $\leq 2^{\circ} \mathrm{C}$

Note: the two items above is disable when starting for the first time.
3)Press "-" button in the remote controller, and then restore $\mathrm{Ts}=\mathrm{Tr}+5^{\circ} \mathrm{C}$.

Press " + " button in the remote controller, and then operate according to automatic compensation setting
4)If $\mathrm{Tr}-\mathrm{Td}$ [before compressor starts] $\leq 0^{\circ} \mathrm{C}$, and then operate according to $\mathrm{Ts}=\mathrm{Tr}+5^{\circ} \mathrm{C}$.
3. If air door in "health airflow mode" and blow up, the temp. setting of heating is added by $2^{\circ} \mathrm{C}$ in the base of beginnig.

## 4. Control function:

4.1Timer function: You can set 24 -hour timer on or timer off as required, and the minum time unit is 1 minute. After setting, a pattern of clock displaied on the LCD, and it is off when timer setting is completed. There are several timer mode as follows.

- Timer on: The pattern of clock displaied on the LCD,the background light is off, and unit behaves with halt status. Timer on is completed, and then unit starts running with the pattern of clock disappeared,and the background light is on. The unit starts with the last setting receiving timer signals, and sleep setting is not allowed.
- Timer off: Unit working, the pattern of clock displaied on the LCD; When reaching time setting, unit enters shutdown mode, and sleep function can be set. If timer off and sleep are set synchronously, the one which time is short run first. Executing shutdown instruction clear timer and sleep function.
- Timer on and timer off can be set synchronously. when they are completed,
4.2 Sleep function (saving function at night):. The pattern of clock displaied on the LCD
- In cooling/defrosting mode, the temp. setting increases $1^{\circ} \mathrm{C}$ one hour later after startup. After another hour the temp. setting increase by more $1^{\circ} \mathrm{C}$ and then run continuously for another 6 hours and then close.
- In heating mode, the temp. setting decrease $2^{\circ} \mathrm{C}$ one hour after startup. After another hour the temp. setting decrease by more $2^{\circ} \mathrm{C}$. After 3 hours the temp. setting rise by $1^{\circ} \mathrm{C}$ and then run continuously for another 3 hours and then close.
- If the wind speed is set to high or medium before going to bed, the wind speed shifts to medium or low. If the wind speed is set to low before going to bed, the wind speed keep unchanged.


### 4.3 Protection of malfunction of temperature sensitive resistance.

- The temperature sensitive resistor is short circuit or open circuit, the machine doesn't work.
- During defrosting, don't detect if the temperature sensor short circuit or open circuit.
- Detect the temperature of coil pipe is below $-40^{\circ} \mathrm{C}$, then think the temperation circuit of coil pipe is open.
- Detect the temperature of coil pipe is above $95^{\circ} \mathrm{C}$, then think the temperation circuit of coil pipe is short .
- Detect the temperature of inlet air is below $-20^{\circ} \mathrm{C}$, then think the temperation circuit of inlet air is open.
- Detect the temperature of inlet air is above $90^{\circ} \mathrm{C}$, then think the temperation circuit of inlet air is short.


### 4.4 Emergency switch imput:

- Press the switch of emergency operation, then buzzer rings once and unit enters the automatic operation mode. (emergency operation)
- If the switch is kept pressed for 5 seconds, buzzer ring two times and unit enter enter test run mode.
- Press the switch again, and then closes.
- The unit can receive remote control.
- Enter emergency operation from timer mode, then timer is cancelled.
- Test run:

1) The temperature sensor of inlet air doesn't work, and compressor starts (but subject to the limit of -minute delay excluding the first time), and high wind, cooling, and air door is open. The indoor fan motor runs, running indicator lights up, compressor relay and the one of outdoor fan motor is closed
2) During test run:

- The prevention of freezing of evaporator doesn't work.
- Over current control doesn't work.
- The control of current peak expiration doesn't work.
- Temperature control doesn't work.
- Temperature expiration control doesn't work.
- The test run is over after 30 minutes, then the unit turn off


### 4.5 Executive function after 2 seconds by remoter control:

After receiving remote control signal, the mainboard doesn't enter the corresponding instruction task until 2 seconds elapse.

- $\bigvee$ The memory function of power down is available, and the auto recovery function of power on is optional. (In auto, heating, cooling, or defrosting status, press the "sleeping" button 10 times within 5 seconds, and the auto recovery function of power on can be set on/off. If the buzzer rings 4 times, the the auto recovery function of power on is available; If the buzzer rings 2 times, the the auto recovery function of power on is unavailable.)
4.6 Alarm from indoor fan motor: 120 seconds later after the indoor fan motor is charged, and the impulse from fan motor is not detected, then stop outputting voltage to indoor fan motor, send alarm signals.

4. 7 Manual defrosting: when the wire controller is on, choose high wind, $30^{\circ} \mathrm{C}$, and press the sleeping button for 6 times within 5 seconds, and after the buzzer rings 3 times, the air conditioner enter manual defrosting mode, which is the same as heating defrosting.
5. Run mode:(Tr: inlet air temperature,Ts : the set temperature)
2.1 automatic run mode

The background lighting of the LCD is white

1) cooling only type automatic run mode:

When the system runs under "automatic" mode for the first time, it will determine the operating mode according to the follows,
$\mathrm{Tr} \geq \mathrm{Ts}+3^{\circ} \mathrm{C} \quad$ Choose Cooling mode
$\mathrm{Tr}<\mathrm{Ts}-3^{\circ} \mathrm{C} \quad$ Choose Blowing Mode
The system will shift its operating mode between the above mentioned two to changes of the indoor temperature. If the system is currently under cooling mode, it will switch to blowing mode when $\mathrm{Tr}<\mathrm{Ts}-3^{\circ} \mathrm{C}$; if the system is currently under blowing mode, it will in turn switch to cooling mode when $\mathrm{Tr}>\mathrm{Ts}+3^{\circ} \mathrm{C}$. The switching mode as below,

## 2) cold/warm type run mode:

When the system runs under "automatic" mode for the first time, it will determine the operating mode according to the follows,

$$
\begin{aligned}
\mathrm{Tr} \geq \mathrm{Ts}-3^{\circ} \mathrm{C} & \text { Choose Cooling Mode } \\
\mathrm{Tr}<\mathrm{Ts}-3^{\circ} \mathrm{C} & \text { Choose Heating Mode }
\end{aligned}
$$

The system will shift its operating mode between the above mentioned two to changes of the indoor temperature. If the system is currently under cooling mode, the compressor will stop functioning if the temperature lowers to such a degree that requires so; then it will recheck the temperature 15 minutes later: it will switch to the heating mode if the temperature is $\mathrm{Tr}<\mathrm{Ts}-3^{\circ} \mathrm{C}$, or it will still stay in cooling mode(including blowing mode). if the system is currently under heating mode, the compressor will stop running if the temperatur lowers to such a degree that requires so, then it will recheck teh temperatur

15 minutes later: it will switch to the cooling mode if the temperature is $\mathrm{Tr}>\mathrm{Ts}+3^{\circ} \mathrm{C}$.
2.2 Cooling run mode: ( Tr : inlet air temperature, Ts : the set temperature)

The background lighting of the LCD is blue
Temperature control range : $16^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$
Temperature control precision: $\pm 1^{\circ} \mathrm{C}$
Compressor can't be controlled by temperature sensor within 2 minutes after it starts.
Control character: when $\mathrm{Tr}>\mathrm{Ts}$, outdoor fan motor and compressor on, and indoor fan motor run at fixed wind speed. When $\mathrm{Tr}<\mathrm{Ts}$, outdoor fan motor and compressor off, and when Tr $>\mathrm{Ts}$, outdoor fan motor and compressor are working again.

If $\mathrm{Tr}=\mathrm{Ts}$, the indoor fan motor,outdoor fan motor and the compressor's state will not change.
wind speed control: (the temperature difference is $1^{\circ} \mathrm{C}$ )
auto: when $\operatorname{Tr}>=\mathrm{Ts}+3^{\circ} \mathrm{C}$, the wind speed is high;
when $\mathrm{Ts}+1^{\circ} \mathrm{C} \leq \mathrm{Tr}<\mathrm{Ts}+3^{\circ} \mathrm{C}$, the wind speed is medium.
When $\mathrm{Tr}<\mathrm{Ts}+1^{\circ} \mathrm{C}$, the wind speed is low.
When temperature sensor is off, the fan motor runs at low speed.
when the wind speed changes from low to higher, there is no delay, and when it changes from high to lower, there is a 3-minutes delay before conversion.
Manual operation: When unit is on the wind speed can be set to high, medium, low or automatic as required (execute instruction 2 seconds later after receiving remote signal)
compressor control : The compressor can't be controlled by temperature sensor within 2 minutes after
startup and can be only restarted at least 3 minutes later after shutdown. There is no 3-minute
protection with power on for the first time (over 3 minutes with power off). The compressor must
stands by for 3 minutes before it is restarted after shutdown.
There is no 2-minute limit when changing the temperature setting or shutting down the machine
through the remote controller, and the machine can be shut down immediately.
Avoiding electrical shock: outdoor fan motor is available 2 seconds later after the compressor startup.

Controlling the position of air door: set the position of air door as required.
Protection of expiration of current peak value is available: Current cross detection is available in order
to avoid burning out the compressor when the current is too big. The action character as follows:

The compressor can't be detected in 60 seconds after startup. when current is above "CT 1.6 V"
and lasts 3 seconds, the system enter protection mode and shut off compressor with outdoor air
blower and indoor fan motor controlled as the temperature sensor is off. After 3 minutes the machine can be started again.

Protection of frost is available (disable in test run or heating mode): In order to prevent the indoor heat
exchanger from freezing (in refrigation or dehumidifying mode), the compressor will be shut off when the temperature of the indoor coil pipe is or below $0^{\circ} \mathrm{C}$ and the compressor runs for over 5 minutes. When the temperature of the indoor coil pipe ascends to over $7^{\circ} \mathrm{C}$, the compressor is restarted (must meet a 3-minutes delay)
Timer on, Timer off and sleep control are available.

### 2.3 Dehumidifying mode: (Tr: inlet air temperature,Ts : the set temperature)

The background lighting of the LCD is aquamarine blue
Temperature control range : $16^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$
Temperature control precision: $\pm 1^{\circ} \mathrm{C}$ control character:

- When Tr (indoor temperature) $>\mathrm{Ts}$ (temperature setting) $+2^{\circ} \mathrm{C}$, compressor and outdoor fan motor run continuosly with indoor fan motor runnig in accordance with the wind speed setting.
- When Tr ranges from Ts to $\mathrm{Ts}+2^{\circ} \mathrm{C}$, outdoor fan motor and compressor are on for 10 minutes and off for 6 minutes, the indoor fan motor is off in 3 minutes after shutdown of compressor and gives breeze in other time.
- When $\mathrm{Tr}<\mathrm{Ts}$, outdoor fan motor and compressor are unavailable, and the indoor fan motor enter breeze mode 3 minutes later after shut down of compressor.
- When all the ranges alternate, there is $\pm 1^{\circ} \mathrm{C}$ difference.

Wind speed control:
Automation: When $\mathrm{Tr}>=\mathrm{Ts}+5^{\circ} \mathrm{C}$, the wind speed is high.
When $\mathrm{Ts}+3^{\circ} \mathrm{C} \leq \mathrm{Tr}<\mathrm{Ts}+5^{\circ} \mathrm{C}$, the wind speed is medium.
When $\mathrm{Ts}+2^{\circ} \mathrm{C} \leq \mathrm{Tr}<\mathrm{Ts}+3^{\circ} \mathrm{C}$, the wind speed is low.
When $\mathrm{Ts} \leq \mathrm{Tr}<\mathrm{Ts}+2^{\circ} \mathrm{C}$, the machine gives breeze intermittently.
When $\mathrm{Tr}<\mathrm{Ts}$, the indoor fan motor is shut off. in 3 minutes
When $\mathrm{Tr}<\mathrm{Ts}$, the machine gives breeze after 3 minutes
Manual operation: When the temperation sensor is off or the Indoor fan motor runs intermittently, the indoor fan motor can not be operated by hand (compelling automatic operation), along with the indoor fan motor can be operated in cooling mode. While controlling fan motor by hand in cooling mode, the cooling ranges include wind speed setting and refriferation range, others are the same as fan motor in automation mode.
compressor control : The compressor can't be controlled by temperature sensor in 2 minutes after
startup and also can't be started again at least 3 minutes later after shutdown. There are 3-minutes protection with power on for the first time (over 3 minutes with power off). The compressor must be started again 3 minutes later after shutdown.
There is no 2-minutes limit when changing the temperature setting or shutting off the
machine
through the remote controller, and the machine can be shut down immediately.
Avoiding electrical shock: outdoor fan motor is available 2 seconds later after compressor startup.

Controlling the position of air door: set the position of air door as required.
Protection of expiration of current peak value is available: Current cross detection is available in order
to avoid burning out the compressor when the current is too big. The action character as follows:

The compressor can't be detected in 60 seconds after startup. when current is above

## "CT 1.6 V"

and lasts 3 seconds, the system enter protection mode and shut off compressor with outdoor air
blower and indoor fan motor controlled as the temperature sensor is off. After 3 minutes the machine can be started again.
Protection of frost is available (disable in test run or heating mode): In order to prevent the indoor heat
exchanger from freezing (in refrigation or dehumidifying mode), the compressor will be shut off when the temperature of the indoor coil pipe is or below $0^{\circ} \mathrm{C}$ and the compressor runs for over 5 minutes. When the temperature of the indoor coil pipe ascends to over $7^{\circ} \mathrm{C}$, the compressor is restarted (must meet a 3-minutes delay)
Timer on, Timer off and sleep control are available.
2.4 Heating mode: (Tr: inlet air temperature,Ts : the set temperature)

The background lighting of the LCD is red
Temperature control range : $16^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$
Temperature control precision: $\pm 1^{\circ} \mathrm{C}$
Control Character:
When $\mathrm{Tr} \leq \mathrm{Ts}$, compressor, four-ways valve and outdoor fan motor is on, indoor fan motor runs as in cold blast avoidance mode, and $4^{\circ} \mathrm{Cof}$ compensation is added after compressor is started.
When $\mathrm{Tr}>\mathrm{Ts}+5^{\circ} \mathrm{C}$, compressor is off, and the indoor fan motor runs as in cold blast avoidance mode.
When $\mathrm{Tr}<\mathrm{Ts}+5^{\circ} \mathrm{C}$, compressor, four-ways valve and outdoor fan motor is on, and the indoor fan motor runs as in the mode of avoiding cold blast.
Control of indoor fan motor:
Manual operation: The wind speed can be set to high, medium, low or automatic as required.
Automatic operation: When $\mathrm{Tr}<\mathrm{Ts}$, the wind speed is high;
When $\mathrm{Ts}=<\mathrm{Tr}<\mathrm{Ts}+2^{\circ} \mathrm{C}$, the wind speed is medium.
When $\mathrm{Tr}>=\mathrm{Ts}+2^{\circ} \mathrm{C}$, the wind speed is low.
Control of air door: setting the position of air door as required.
compressor control : The compressor can't be controlled by temperature sensor in 2
minutes after startup and also can't be started again at least 3 minutes later after shutdown. There are 3 -minute protection with power on for the first time (over 3 minutes with power off). The compressor must be started again 3 minutes later after shutdown.
There is no 2-minutes limit when changing the temperature setting or shutting off the machine through the remote controller, and the machine can be shut down immediately.
Avoiding electrical shock: outlet air is available 2 seconds later after startup.
Timer on, Timer off and sleep control are available.
Control of 4-way valve: When the unit is started for the first time, the 4-way valve starts runnig 10 seconds earlier than compressor does. After compressor stops runnig, the 4-way valve continues running for 2 minutes and 30 seconds then stops. If changing the unit from heating to cooling, the 4 -way valve is shut off 2 minutes later and compressor is started 3 minutes later.
Cold blast avoidance mode:
(1)Compressor is interrupted during the defrosting operation and continues to run after defrosting is completed. When the indoor exchanging temperature is below $23^{\circ} \mathrm{C}$, the indoor fan motor is off. When the indoor exchanging temperature is above $23^{\circ} \mathrm{C}$, the indoor fan motor is running at weak speed.
(2)If the temperature of coil pipe can't be above $38^{\circ} \mathrm{C} 4$ minutes later after startup, fan motor is running at the preset wind speed.
(3) If the temperature of coil pipe is above $38^{\circ} \mathrm{C}$ in 4 minutes after start up, fan motor is running at the preset wind speed immediately.
(4)If coil pipe descends to the temp. lower than $38^{\circ} \mathrm{C}$ from $38^{\circ} \mathrm{C}$. fan motor still running at the preset wind speed.
(5)If the temperature sensor is off. Compressor stops runnig. If the temperature of coil pipe is above $23^{\circ} \mathrm{C}$, fan motor enter breeze mode; and if the temperature of coil pipe is below $20^{\circ} \mathrm{C}$, fan motor stops running.
(6)Shut down the unit and indoor fan motor stops running.

High temperature protection and high temperature expiration protection:

- High temperature prevention: When the temp. of coil pipe is above $65^{\circ} \mathrm{C}$, the outdoor fan motor stops. When the temp descends to $60^{\circ} \mathrm{C}$, the outdoor fan motor is restarted and fan speed invertage frequence is more than 45 seconds. High temperature expiration prevention: When the temp. of coil pipe is above 72 ${ }^{\circ} \mathrm{C}$, compressor and outdoor fan motor stop running 2 seconds later, and inlet air runs as the temp. sensor is off. When compressor stands by for 3 minute and the temp. of coil pipe is below $64^{\circ} \mathrm{C}$, the unit can be started again.
Current protection and current expiration protection: (Not detecting within 60 seconds after startup)
- Current protection: If current detected is above (CT1) and lasts 10 senconds continuously, outlet air stops. If current detected is below (CT2), outlet air is regained。Current peak expiration protection: If current detected is above (CT3), 3 seconds later the system enter current cross protection, compressor and air outlet stop and start again 3 minuts later, and air inlet runs as the temperature sensor is
off.(different mode has the different CT value)
Overcooling protection:
One and a half minute later after compressor starts, if the temperature of coil pipe is below $-4^{\circ} \mathrm{C}$, compressor and air outlet stop, and air inlet runs according to the temp. setting. Compressor can be restarted 3 minutes later.
Defrosting:
1.Entry conditions of defrosting:
A. Indoor unit enter overload protection and air outlet stops when air outlet has been restarted and runs over 10 minutes, and compressor runs over 45 minutes in total and over 20 minutes continuously, and the temp. of indoor coil pipe is below 38 ${ }^{\circ} \mathrm{C}$.
B. Compressor runs 20 minutes continuously, and the temp. of indoor coil pipe decreases $1^{\circ} \mathrm{C}$ per 6 minutes and this operation repeats 3 times, and the temp. of coil pipe is below $38^{\circ} \mathrm{C}$, then 5 minutes later . the system enters defrosting mode.
C. When compressor runs over 3 hours in total and over 20 minutes continuously and after the temp. of indoor coil pipe is below $38^{\circ} \mathrm{C}$, the system enters defrosting mode.
D. The difference between the temp. of indoor coil pipe and the indoot temp. is below $18^{\circ} \mathrm{C}$ and lasts 5 minutes, compressor runs over 45 minutes in total and over 20 minutes continuously, the temp. of indoor coil pipe is below $38^{\circ} \mathrm{C}$, the system enters defrosting mode.
2.Exit conditions of defrosting:

Defrosting time is higher than 12 minutes (compressor is on), or CT current is above (CT1).

- During the defrosting, if current peak value is cut off, the unit quit the defrosting mode. But the protection of expiration of current peak value is unavailable with 60 senconds after compressor is started.
- During the defrosting and 2 minutes after the defrosting, abnormality of temp. sensor isn't detected.
- After quiting the defrosting mode, the fan motor enter cooling prevention mode.
3.Defrosting oscillogram:


Automatic temperature compensation of heating:

1. Conditions: Halt time of compressor is below 5 minutes.
2. Operation rules: 1) $\mathrm{Ts}=\mathrm{Tr}+5^{\circ} \mathrm{C}+(\mathrm{Tr}-\mathrm{Td}$ (temperature detected) [the moment of startup])
2) $\mathrm{Tr}-\mathrm{Td}$ [the moment of startup] $\leq 2^{\circ} \mathrm{C}$

Note: the two items above is disable when starting for the first time.
3 )Press "-" button in the remote controller, and then restore $\mathrm{Ts}=\mathrm{Tr}+5$
${ }^{\circ} \mathrm{C}$.
Press " + " button in the remote controller, and then operate according to automatic compensation setting
4)If $\mathrm{Tr}-\mathrm{Td}$ [before compressor starts] $\leq 0^{\circ} \mathrm{C}$, and then operate according to
$\mathrm{Ts}=\mathrm{Tr}+5^{\circ} \mathrm{C}$.

## 4.Control function:

4.1Timer function: You can set 24 -hour timer on or timer off as required, and the minum time unit is 1 minute. After setting, a pattern of clock displaied on the LCD, and it is off when timer setting is completed. There are several timer mode as follows.

- Timer on: The pattern of clock displaied on the LCD,the background light is off, and unit behaves with halt status. Timer on is completed, and then unit starts running with the pattern of clock disappeared,and the background light is on. The unit starts with the last setting receiving timer signals, and sleep setting is not allowed.
- Timer off: Unit working, the pattern of clock displaied on the LCD; When reaching time setting, unit enters shutdown mode, and sleep function can be set.

If timer off and sleep are set synchronously, the one which time is short run first. Executing shutdown instruction clear timer and sleep function.

- Timer on and timer off can be set synchronously. when they are completed,
4.2 Sleep function (saving function at night):. The pattern of clock displaied on the LCD
- In cooling/defrosting mode, the temp. setting increases $1^{\circ} \mathrm{C}$ one hour later after startup. After another hour the temp. setting increase by more $1^{\circ} \mathrm{C}$ and then run continuously for another 6 hours and then close.
- In heating mode, the temp. setting decrease $2^{\circ} \mathrm{C}$ one hour after startup. After another hour the temp. setting decrease by more $2^{\circ} \mathrm{C}$. After 3 hours the temp. setting rise by $1^{\circ} \mathrm{C}$ and then run continuously for another 3 hours and then close.
- If the wind speed is set to high or medium before going to bed, the wind speed shifts to medium or low. If the wind speed is set to low before going to bed, the wind speed keep unchanged.


### 4.3 Protection of malfunction of temperature sensitive resistance.

- The temperature sensitive resistor is short circuit or open circuit, the machine doesn't work.
- During defrosting, don't detect if the temperature sensor short circuit or open circuit.
- Detect the temperature of coil pipe is below $-40^{\circ} \mathrm{C}$, then think the temperation circuit of coil pipe is open.
- Detect the temperature of coil pipe is above $95^{\circ} \mathrm{C}$, then think the temperation circuit of coil pipe is short.
- Detect the temperature of inlet air is below $-20^{\circ} \mathrm{C}$, then think the temperation circuit of inlet air is open.
- Detect the temperature of inlet air is above $90^{\circ} \mathrm{C}$, then think the temperation circuit of inlet air is short.


### 4.4 Emergency switch imput:

- Press the switch of emergency operation, then buzzer rings once and unit enters the automatic operation mode. (emergency operation)
- If the switch is kept pressed for 5 seconds, buzzer ring two times and unit enter enter test run mode.
- Press the switch again, and then closes.
- The unit can receive remote control.
- Enter emergency operation from timer mode, then timer is cancelled.
- Test run:

1) The temperature sensor of inlet air doesn't work, and compressor starts (but subject to the limit of -minute delay excluding the first time), and high wind, cooling, and air door is open. The indoor fan motor runs, compressor relay and the one of outdoor fan motor is closed
2) During test run:

- The prevention of freezing of evaporator doesn't work.
- Over current control doesn't work.
- The control of current peak expiration doesn't work.
- Temperature control doesn't work.
- Temperature expiration control doesn't work.
- The test run is over after 30 minutes, then the unit turn off


### 4.5 Executive function after 2 seconds by remoter control:

After receiving remote control signal, the mainboard doesn't enter the corresponding instruction task until 2 seconds elapse.

- $\gamma$ The memory function of power down is available, and the auto recovery function of power on is optional. (In auto, heating, cooling, or defrosting status, press the "sleeping" button 10 times within 5 seconds, and the auto recovery function of power on can be set on/off. If the buzzer rings 4 times, the the auto recovery function of power on is available; If the buzzer rings 2 times, the auto recovery function of power on is unavailable.)
4.6 Alarm from indoor fan motor: 120 seconds later after the indoor fan motor is charged, and the impulse from fan motor is not detected, then stop outputting voltage to indoor fan motor, send alarm signals.

4. 7 Manual defrosting: when the wire controller is on, choose high wind, $30^{\circ} \mathrm{C}$, and press the sleeping button for 6 times within 5 seconds, and after the buzzer rings 3 times, the air conditioner enter manual defrosting mode, which is the same as heating defrosting.
5. Run mode:(Tr: inlet air temperature,Ts : the set temperature)

## 2.1 automatic run mode

## The background lighting of the LCD is white

1) cooling only type automatic run mode:

When the system runs under "automatic" mode for the first time, it will determine the operating mode according to the follows,
$\mathrm{Tr} \geq \mathrm{Ts}+3^{\circ} \mathrm{C}$ Choose Cooling mode
$\mathrm{Tr}<\mathrm{Ts}-3^{\circ} \mathrm{C} \quad$ Choose Blowing Mode
The system will shift its operating mode between the above mentioned two to changes of the indoor temperature. If the system is currently under cooling mode, it will switch to blowing mode when $\mathrm{Tr}<\mathrm{Ts}-3^{\circ} \mathrm{C}$; if the system is currently under blowing mode, it will in turn switch to cooling mode when $\mathrm{Tr}>\mathrm{Ts}+3^{\circ} \mathrm{C}$. The switching mode as below,

## 2) cold/warm type run mode:

When the system runs under "automatic" mode for the first time, it will determine the operating mode according to the follows,

$$
\begin{aligned}
\mathrm{Tr} \geq \mathrm{Ts}-3^{\circ} \mathrm{C} & \text { Choose Cooling Mode } \\
\mathrm{Tr}<\mathrm{Ts}-3^{\circ} \mathrm{C} & \text { Choose Heating Mode }
\end{aligned}
$$

The system will shift its operating mode between the above mentioned two to changes of the indoor temperature. If the system is currently under cooling mode, the compressor will stop functioning if the temperature lowers to such a degree that requires so; then it will recheck the temperature 15 minutes later: it will switch to the heating mode if the temperature is $\mathrm{Tr}<\mathrm{Ts}-3^{\circ} \mathrm{C}$, or it will still stay in cooling mode(including blowing mode). if the system is currently under heating mode, the compressor will stop running if the temperatur lowers to such a degree that requires so, then it will recheck teh temperatur

15 minutes later: it will switch to the cooling mode if the temperature is $\mathrm{Tr}>\mathrm{Ts}+3^{\circ} \mathrm{C}$.
2.2 Cooling run mode: (Tr: inlet air temperature,Ts: the set temperature)

The background lighting of the LCD is blue
Temperature control range : $16^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$
Temperature control precision: $\pm 1^{\circ} \mathrm{C}$
Compressor can't be controlled by temperature sensor within 2 minutes after it starts.
Control character: when $\mathrm{Tr}>\mathrm{Ts}$, outdoor fan motor and compressor on, and indoor fan motor run at fixed wind speed. When $\mathrm{Tr}<\mathrm{Ts}$, outdoor fan motor and compressor off, and when Tr $>\mathrm{Ts}$, outdoor fan motor and compressor are working again.

If $\mathrm{Tr}=\mathrm{Ts}$, the indoor fan motor,outdoor fan motor and the compressor's state will not change.
wind speed control: (the temperature difference is $1^{\circ} \mathrm{C}$ )
auto: when $\operatorname{Tr}>=\mathrm{Ts}+3^{\circ} \mathrm{C}$, the wind speed is high;
when $\mathrm{Ts}+1^{\circ} \mathrm{C} \leq \mathrm{Tr}<\mathrm{Ts}+3^{\circ} \mathrm{C}$, the wind speed is medium.
When $\mathrm{Tr}<\mathrm{Ts}+1^{\circ} \mathrm{C}$, the wind speed is low.
When temperature sensor is off, the fan motor runs at low speed.
when the wind speed changes from low to higher, there is no delay, and when it changes from high to lower, there is a 3-minutes delay before conversion.
Manual operation: When unit is on the wind speed can be set to high, medium, low or automatic as required (execute instruction 2 seconds later after receiving remote signal)
compressor control : The compressor can't be controlled by temperature sensor within 2 minutes after
startup and can be only restarted at least 3 minutes later after shutdown. There is no 3-minute
protection with power on for the first time (over 3 minutes with power off). The compressor must
stands by for 3 minutes before it is restarted after shutdown.
There is no 2-minute limit when changing the temperature setting or shutting down the machine
through the remote controller, and the machine can be shut down immediately.
Avoiding electrical shock: outdoor fan motor is available 2 seconds later after the compressor startup.

Controlling the position of air door: set the position of air door as required.

Protection of frost is available (disable in test run or heating mode): In order to prevent the indoor heat
exchanger from freezing (in refrigation or dehumidifying mode), the compressor will be shut off when the temperature of the indoor coil pipe is or below $0^{\circ} \mathrm{C}$ and the compressor runs for over 5 minutes. When the temperature of the indoor coil pipe ascends to over $7^{\circ} \mathrm{C}$, the compressor is restarted (must meet a 3-minutes delay)

Timer on, Timer off and sleep control are available.

### 2.3 Dehumidifying mode: ( Tr : inlet air temperature,Ts : the set temperature)

The background lighting of the LCD is aquamarine blue
Temperature control range : $16^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$
Temperature control precision: $\pm 1^{\circ} \mathrm{C}$
control character:

- When Tr (indoor temperature) $>\mathrm{Ts}$ (temperature setting) $+2^{\circ} \mathrm{C}$, compressor and outdoor fan motor run continuosly with indoor fan motor runnig in accordance with the wind speed setting.
- When Tr ranges from Ts to $\mathrm{Ts}+2^{\circ} \mathrm{C}$, outdoor fan motor and compressor are on for 10 minutes and off for 6 minutes, the indoor fan motor is off in 3 minutes after shutdown of compressor and gives breeze in other time.
- When $\mathrm{Tr}<\mathrm{Ts}$, outdoor fan motor and compressor are unavailable, and the indoor fan motor enter breeze mode 3 minutes later after shut down of compressor.
- When all the ranges alternate, there is $\pm 1^{\circ} \mathrm{C}$ difference.

Wind speed control:
Automation: When $\mathrm{Tr}>=\mathrm{Ts}+5^{\circ} \mathrm{C}$, the wind speed is high.
When $\mathrm{Ts}+3^{\circ} \mathrm{C} \leq \mathrm{Tr}<\mathrm{Ts}+5^{\circ} \mathrm{C}$, the wind speed is medium.
When $\mathrm{Ts}+2^{\circ} \mathrm{C} \leq \mathrm{Tr}<\mathrm{Ts}+3^{\circ} \mathrm{C}$, the wind speed is low.
When $\mathrm{Ts} \leq \mathrm{Tr}<\mathrm{Ts}+2^{\circ} \mathrm{C}$, the machine gives breeze intermittently.
When $\mathrm{Tr}<\mathrm{Ts}$, the indoor fan motor is shut off. in 3 minutes
When $\mathrm{Tr}<\mathrm{Ts}$, the machine gives breeze after 3 minutes
Manual operation: When the temperation sensor is off or the Indoor fan motor runs intermittently, the indoor fan motor can not be operated by hand (compelling automatic operation), along with the indoor fan motor can be operated in cooling mode. While controlling fan motor by hand in cooling mode, the cooling ranges include wind speed setting and refriferation range, others are the same as fan motor in automation mode.
compressor control : The compressor can't be controlled by temperature sensor in 2 minutes after
startup and also can't be started again at least 3 minutes later after shutdown. There are 3-minutes protection with power on for the first time (over 3 minutes with power off). The compressor must be started again 3 minutes later after shutdown.
There is no 2 -minutes limit when changing the temperature setting or shutting off the machine
through the remote controller, and the machine can be shut down immediately.
Avoiding electrical shock: outdoor fan motor is available 2 seconds later after compressor startup.

Controlling the position of air door: set the position of air door as required.
Protection of frost is available (disable in test run or heating mode): In order to prevent the indoor heat
exchanger from freezing (in refrigation or dehumidifying mode), the compressor will be shut off when the temperature of the indoor coil pipe is or below $0^{\circ} \mathrm{C}$ and the compressor runs for over 5 minutes. When the temperature of the indoor
coil pipe ascends to over $7^{\circ} \mathrm{C}$, the compressor is restarted (must meet a 3-minutes delay)
Timer on, Timer off and sleep control are available.
2.4 Heating mode: (Tr: inlet air temperature,Ts : the set temperature)

The background lighting of the LCD is red
Temperature control range : $16^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$
Temperature control precision: $\pm 1^{\circ} \mathrm{C}$
Control Character:
When $\mathrm{Tr} \leq \mathrm{Ts}$, compressor, four-ways valve and outdoor fan motor is on, indoor fan motor runs as in cold blast avoidance mode, and $4^{\circ} \mathrm{Cof}$ compensation is added after compressor is started.
When $\mathrm{Tr}>\mathrm{Ts}+5^{\circ} \mathrm{C}$, compressor is off, and the indoor fan motor runs as in cold blast avoidance mode.
When $\mathrm{Tr}<\mathrm{Ts}+5^{\circ} \mathrm{C}$, compressor, four-ways valve and outdoor fan motor is on, and the indoor fan motor runs as in the mode of avoiding cold blast.
Control of indoor fan motor:
Manual operation: The wind speed can be set to high, medium, low or automatic as required.
Automatic operation: When $\mathrm{Tr}<\mathrm{Ts}$, the wind speed is high;
When $\mathrm{Ts}=<\mathrm{Tr}<\mathrm{Ts}+2^{\circ} \mathrm{C}$, the wind speed is medium.
When $\mathrm{Tr}>=\mathrm{Ts}+2^{\circ} \mathrm{C}$, the wind speed is low.
Control of air door: setting the position of air door as required.
compressor control : The compressor can't be controlled by temperature sensor in 2 minutes after startup and also can't be started again at least 3 minutes later after shutdown. There are 3 -minute protection with power on for the first time (over 3 minutes with power off). The compressor must be started again 3 minutes later after shutdown.
There is no 2-minutes limit when changing the temperature setting or shutting off the machine through the remote controller, and the machine can be shut down immediately.
Avoiding electrical shock: outlet air is available 2 seconds later after startup.
Timer on, Timer off and sleep control are available.
Control of 4-way valve: When the unit is started for the first time, the 4 -way valve starts runnig 10 seconds earlier than compressor does. After compressor stops runnig, the 4-way valve continues running for 2 minutes and 30 seconds then stops. If changing the unit from heating to cooling, the 4 -way valve is shut off 2 minutes later and compressor is started 3 minutes later.
Cold blast avoidance mode:
(1)Compressor is interrupted during the defrosting operation and continues to run after defrosting is completed. When the indoor exchanging temperature is below $23^{\circ} \mathrm{C}$, the indoor fan motor is off. When the indoor exchanging temperature is above $23^{\circ} \mathrm{C}$, the indoor fan motor is running at weak speed.
(2)If the temperature of coil pipe can't be above $38^{\circ} \mathrm{C} 4$ minutes later after startup, fan motor is running at the preset wind speed.
(3) If the temperature of coil pipe is above $38^{\circ} \mathrm{C}$ in 4 minutes after start up, fan motor is running at the preset wind speed immediately.
(4)If coil pipe descends to the temp. lower than $38^{\circ} \mathrm{C}$ from $38^{\circ} \mathrm{C}$. fan motor still running at the preset wind speed.
(5)If the temperature sensor is off. Compressor stops runnig. If the temperature of coil pipe is above $23^{\circ} \mathrm{C}$, fan motor enter breeze mode; and if the temperature of coil pipe is below $20^{\circ} \mathrm{C}$, fan motor stops running.
(6)Shut down the unit and indoor fan motor stops running.

High temperature protection and high temperature expiration protection:

- High temperature prevention: When the temp. of coil pipe is above $58^{\circ} \mathrm{C}$, the outdoor fan motor stops. When the temp descends to $55^{\circ} \mathrm{C}$, the outdoor fan motor is restarted and fan speed invertage frequence is more than 45 seconds. High temperature expiration prevention: When the temp. of coil pipe is above 68 ${ }^{\circ} \mathrm{C}$, compressor and outdoor fan motor stop running 2 seconds later, and inlet air runs as the temp. sensor is off. When compressor stands by for 3 minute and the temp. of coil pipe is below $46^{\circ} \mathrm{C}$, the unit can be started again.
Overcooling protection:
One and a half minute later after compressor starts, if the temperature of coil pipe is below $-4^{\circ} \mathrm{C}$, compressor and air outlet stop, and air inlet runs according to the temp. setting. Compressor can be restarted 3 minutes later.

Defrosting:
1.Entry conditions of defrosting:
A. Indoor unit enter overload protection and air outlet stops when air outlet has been restarted and runs over 10 minutes, and compressor runs over 45 minutes in total and over 20 minutes continuously, and the temp. of indoor coil pipe is below 38 ${ }^{\circ} \mathrm{C}$.
B. Compressor runs 20 minutes continuously, and the temp. of indoor coil pipe decreases $1^{\circ} \mathrm{C}$ per 6 minutes and this operation repeats 3 times, and the temp. of coil pipe is below $38^{\circ} \mathrm{C}$, then 5 minutes later . the system enters defrosting mode.
C. When compressor runs over 3 hours in total and over 20 minutes continuously and after the temp. of indoor coil pipe is below $38^{\circ} \mathrm{C}$, the system enters defrosting mode.
D. The difference between the temp. of indoor coil pipe and the indoot temp. is below $18^{\circ} \mathrm{C}$ and lasts 5 minutes, compressor runs over 45 minutes in total and over 20 minutes continuously, the temp. of indoor coil pipe is below $38^{\circ} \mathrm{C}$, the system enters defrosting mode.
2.Exit conditions of defrosting:

Defrosting time is higher than 12 minutes (compressor is on)

- During the defrosting, if current peak value is cut off, the unit quit the defrosting mode. But the protection of expiration of current peak value is unavailable with 60 senconds after compressor is started.
- During the defrosting and 2 minutes after the defrosting, abnormality of temp.
sensor isn't detected.
- After quiting the defrosting mode, the fan motor enter cooling prevention mode.
3.Defrosting oscillogram:


Automatic temperature compensation of heating:

1. Conditions: Halt time of compressor is below 5 minutes.
2. Operation rules: 1) $\mathrm{Ts}=\mathrm{Tr}+5^{\circ} \mathrm{C}+(\mathrm{Tr}-\mathrm{Td}$ (temperature detected)[the moment of startup])
2) $\mathrm{Tr}-\mathrm{Td}$ [the moment of startup] $\leq 2^{\circ} \mathrm{C}$

Note: the two items above is disable when starting for the first time.
3)Press "-" button in the remote controller, and then restore $\mathrm{Ts}=\mathrm{Tr}+5$
${ }^{\circ} \mathrm{C}$.
Press " + " button in the remote controller, and then operate according to automatic compensation setting
4)If $\mathrm{Tr}-\mathrm{Td}$ [before compressor starts] $\leq 0^{\circ} \mathrm{C}$, and then operate according to
$\mathrm{Ts}=\mathrm{Tr}+5^{\circ} \mathrm{C}$.

## 4.Control function:

4.1Timer function: You can set 24-hour timer on or timer off as required, and the minum time unit is 1 minute. After setting, a pattern of clock displaied on the LCD, and it is off when timer setting is completed. There are several timer mode as follows.

- Timer on: The pattern of clock displaied on the LCD,the background light is off, and unit behaves with halt status. Timer on is completed, and then unit starts running with the pattern of clock disappeared,and the background light is on. The unit starts with the last setting receiving timer signals, and sleep setting is
not allowed.
- Timer off: Unit working, the pattern of clock displaied on the LCD; When reaching time setting, unit enters shutdown mode, and sleep function can be set. If timer off and sleep are set synchronously, the one which time is short run first. Executing shutdown instruction clear timer and sleep function.
- Timer on and timer off can be set synchronously. when they are completed,
4.2 Sleep function (saving function at night):. The pattern of clock displaied on the LCD
- In cooling/defrosting mode, the temp. setting increases $1^{\circ} \mathrm{C}$ one hour later after startup. After another hour the temp. setting increase by more $1{ }^{\circ} \mathrm{C}$ and then run continuously for another 6 hours and then close.
- In heating mode, the temp. setting decrease $2^{\circ} \mathrm{C}$ one hour after startup. After another hour the temp. setting decrease by more $2^{\circ} \mathrm{C}$. After 3 hours the temp. setting rise by $1^{\circ} \mathrm{C}$ and then run continuously for another 3 hours and then close.
- If the wind speed is set to high or medium before going to bed, the wind speed shifts to medium or low. If the wind speed is set to low before going to bed, the wind speed keep unchanged.


### 4.3 Protection of malfunction of temperature sensitive resistance.

- The temperature sensitive resistor is short circuit or open circuit, the machine doesn't work.
- During defrosting, don't detect if the temperature sensor short circuit or open circuit.
- Detect the temperature of coil pipe is below $-40^{\circ} \mathrm{C}$, then think the temperation circuit of coil pipe is open.
- Detect the temperature of coil pipe is above $95^{\circ} \mathrm{C}$, then think the temperation circuit of coil pipe is short .
- Detect the temperature of inlet air is below $-20^{\circ} \mathrm{C}$, then think the temperation circuit of inlet air is open.
- Detect the temperature of inlet air is above $90^{\circ} \mathrm{C}$, then think the temperation circuit of inlet air is short.


### 4.4 Emergency switch imput:

- Press the switch of emergency operation, then buzzer rings once and unit enters the automatic operation mode. (emergency operation)
- If the switch is kept pressed for 5 seconds, buzzer ring two times and unit enter test run mode.
- Press the switch again, and then closes.
- The unit can receive remote control.
- Enter emergency operation from timer mode, then timer is cancelled.
- Test run:

[^0]- The prevention of freezing of evaporator doesn't work.
- Over current control doesn't work.
- The control of current peak expiration doesn't work.
- Temperature control doesn't work.
- Temperature expiration control doesn't work.
- The test run is over after 30 minutes, then the unit turn off
4.5 Executive function after 2 seconds by remoter control:

After receiving remote control signal, the mainboard doesn't enter the corresponding instruction task until 2 seconds elapse.

- $\zeta$ The memory function of power down is available, and the auto recovery function of power on is optional. (In auto, heating, cooling, or defrosting status, press the "sleeping" button 10 times within 5 seconds, and the auto recovery function of power on can be set on/off. If the buzzer rings 4 times, the auto recovery function of power on is available; If the buzzer rings 2 times, the auto recovery function of power on is unavailable.)
4.6 Alarm from indoor fan motor: 120 seconds later after the indoor fan motor is charged, and the impulse from fan motor is not detected, then stop outputting voltage to indoor fan motor, send alarm signals.

4. 7 Manual defrosting: when the wire controller is on, choose high wind, $30^{\circ} \mathrm{C}$, and press the sleeping button for 6 times within 5 seconds, and after the buzzer rings 3 times, the air conditioner enter manual defrosting mode, which is the same as heating defrosting.

## 5.express mode of malfunction:

## Error Codes and Description

| Indoor Malfunction | Code indication | Description | Reference <br> Page |
| :--- | :---: | :--- | :---: |
|  | indoor |  |  |
|  | E1 | Room temperature sensor failure |  |
|  | E2 | Heat-exchange sensor failure |  |
|  | E4 | Indoor EEPROM error/Humidity sensor malfunction |  |

## Trouble Shooting

E1: Room temperature sensor failure
CN8
E2: Heat-exchange sensor failure CN8


E4: Indoor EEPROM error: Replace the PCB of indoor unit

## E14 :Indoor fan motor malfunction



## TROUBLE SHOOTING

## Trouble Shooting

Before asking for service, check the following first.

|  | Cause or check points |
| :--- | :--- | :--- |

Application temp. range of air conditioner $-7^{\circ} \mathrm{C} \sim 43^{\circ} \mathrm{C}$.

## INSTALLATION

## Installation Manual of Room Air Conditioner

- Read this manual before installation
- Explain sufficiently the operating means to the user according to this manual.


## Necessary Tools for Installation

1.Driver
2. Hacksaw
3. Hole core drill
4.Spanner(17,19 and 26mm)
5.Torque wrench( $17 \mathrm{~mm}, 22 \mathrm{~mm}, 26 \mathrm{~mm}$ )
6. Pipe cutter
7.Flaring tool
8.Knife
9.Nipper
10.Gas leakage detector or soap-and-water solution
11.Measuring tape
12.Reamer

## Drawing for the installation of indoor and outdoor units

※ The models adopt HFC free refrigerant R410A

Accessory parts

| No. | Accessory parts | Number <br> ofticles |  |
| :---: | :---: | :---: | :---: |
| $(1)$ | Remote controller | 2 |  |
| 2 |  | 0 | R-03 dry battery |, 4


※ The marks from(A)to@)in the figure are the parts numbers.
※ The distance between the indoor unit and the floor should be more than 2 m .


## Fixing of outdoor unit

- Fix the unit to concrete or block with bolts( $\phi 10 \mathrm{~mm}$ ) and nuts firmly and horizontally.
- When fitting the unit to wall surface, roof or rooftop, fix a supporter surely with nails or wires in consideration of earthquake and strong wind.
- If vibration may affect the house, fix the unit by attaching a vibration-proof mat.


## Indoor Unit

- Place, robust not causing vibration, where the body can be supported sufficiently.
- Place, not affected by heat or steam generated in the vicinity, where inlet and outlet of the unit are not disturbed.
- Place, possible to drain easily, where piping can be connected with the outdoor unit.
- Place, where cold air can be spread in a room entirely.
- Place, nearby a power receptacle, with enough space around. (Refer to drawings).
- Place where the distance of more than Im from televisions, radios, wireless apparatuses and fluorescent lamps can be left.
- In the case of fixing the remote controller on a wall, place where the indoor unit can receive signals when the fluorescent lamps in the room are lightened.


## Power Source

- Before inserting power plug into receptacle, check the voltage without fail. The power source is the same as the corresponding name plate. - Install an exclusive branch circuit of the power.
- A receptacle shall be set up in a distance where the power cable can be reached. Do not extend the cable by cutting it.


## Selection of pipe

- To this unit, both liquid and gas pipes shall be insulated as they become low temperature in operation.
- Use optional parts for piping set or pipes covered with equivalent insulation material.
- The thickness of the pipe must be 0.8 mm at least.
- Place, which is less affected by rain or direct sunlight and is sufficiently ventilated.
- Place, possible to bear the unit, where vibration and noise are not increased.
- Place, where discharged wind and noise do not cause a nuisance to the neighbors.
- Place, where a distance marked $\Leftrightarrow$ is available as illustrated in the above figure.

A

## Indoor unit

## 1.Fitting of the Mounting Plate and Positioning of the wall Hole

## When the mounting plate is first fixed

1.Carry out, based on the neighboring pillars or lintels, a proper leveling for the plate to be fixed against the wall, then temporarily fasten the plate with one steel nail.
2. Make sure once more the proper level of the plate, by hanging a thread with a weight from the central top of the plate, then fasten securely the plate with the attachment steel nail.
3. Find the wall hole location A using a measuring tape


Fit the level line

## When the mounting plate is fixed side bar and lintel

- Fix to side bar and lintel a mounting bar, Which is separately sold, and then fasten the plate to the fixed mounting bar.
- Refer to the previous article, " When the mounting plate is first fixed ", for the position of wall hole.


## 2.Making a Hole on the Wall and Fitting the Piping Hole Cover

- Make a hole of 70 mm in diameter, slightly descending to outside the wall.
- Install piping hole cover and seal it off with putty after installation



## 3.Installation of the Indoor Unit

## Drawing of pipe

[ Rear piping ]

- Draw pipes and the drain hose, then fasten them with the adhesive tape


## [ Left • Left-rear piping ]

- In case of left side piping, cut away, with a nipper, the lid for left piping.
- In case of left-rear piping, bend the pipes according to the piping direction to the mark of hole for left-rear piping which is marked on heat insulation materials.

1. Insert the drain hose into the dent of heat insulation materials of indoor unit.
2. Insert the indoor/outdoor electric cable from backside of indoor unit, and pull it out on the front side, then connect them.
3. Coat the flaring seal face with refrigerant oil and connect pipes.

Cover the connection part with heat insulation materials closely, and make sure fixing with adhesive tape


- Indoor/outdoor electric cable and drain hose must be bound with refrigerant piping by protecting tape.


## [Other direction piping]

- Cut away, with a nipper, the lid for piping according to the piping direction and then bend the pipe according to the position of wall hole. When bending, be careful not to crash pipes.
- Connect beforehand the indoor/outdoor electric cable, and then pull out the connected to the heat insulation of connecting part specially.


## Fixing the indoor unit body

- Hang surely the unit body onto the upper notches of the mounting plate. Move the body from side to side to verify its secure fixing.
- In order to fix the body onto the mounting plate,hold up the body aslant from the underside and then put it down perpendicularly.



## 4.Connecting the indoor/outdoor Electric Cable

## Removing the wiring cover

- Remove terminal cover at right bottom corner of indoor unit, then take off wiring cover by removing its screws.


## When connecting the cable after installing the indoor unit

1. Insert from outside the room cable into left side of the wall hole, in which the pipe has already existed.

2. Pull out the cable on the front side, and connect the cable making a loop.

## Haier

## When connecting the cable before installing the indoor unit

- Insert the cable from the back side of the unit, then pull it out on the front side.
- Loosen the screws and insert the cable ends fully into terminal block, then tighten the screws.
- Pull the cable slightly to make sure the cables have been properly inserted and tightened.
- After the cable connection, never fail to fasten the connected cable with the wiring cover.

Note: When connecting the cable, confirm the terminal number of indoor and outdoor units carefully. If wiring is not correct, proper operation can not be carried out and will cause defect.

1. If the supply cord is damaged, it must be replaced by the manufacturer or its service agent or a similar qualified person. The type of connecting wire is H05RN-F or H07RN-F.
2. If the fuse on PC board is broken please change it with the type of T. 3.15A/250V.
3. The wiring method should be in line with the local wiring standard.
4. After installation, the power plug should be easily reached.


HSU-07HV03/R2
HSU-09HV03/R2
HSU-12HV03/R2


## 5.Easily-demount cleaning of indoor unit

## 1.Top inlet can be taken down

Open the inlet grille, press the claw of the clip on the unit,then take down the top inlet.(according to figure 1)
2. Vertical flap can be taken down

Overturn the vertical flap, press the claw of the clip ,then take down vertical flap.(according to figure 2)
3.Horizontal louvers can be taken down

After taking down vertical flap.Horizontal louvers are appeared,draw


Figure 2


Figure 2 the middle louver,and take down the horizontal louvers . (according to figure 3)


## Outdoor unit

## 1.Installation of Outdoor Unit

Install according to
Drawing for the installation of indoor and outdoor units

## 2.Connection of pipes

- To bend a pipe, give the roundness as large as possible not to crush the pipe ,and the bending radius should be 30 to 40 mm or longer.
- Connecting the pipe of gas side first makes working easier.
- The connection pipe is specialized for R410A.
- The max vertical distance between the indoor unit and the outdoor unit is 5 m .


Forced fastening without careful centering may damage the threads and cause a leakage of gas.

| Pipe Diameter $(\phi)$ | Fastening torque |
| :--- | :---: |
| Liquid side $6.35 \mathrm{~mm}\left(1 / 4^{\prime \prime}\right)$ | $18 \mathrm{~N} . \mathrm{m}$ |
| Gas side $9.52 \mathrm{~mm}\left(3 / 8^{\prime \prime}\right)$ | $40 \mathrm{~N} . \mathrm{m}$ |
| Gas side $12.7 \mathrm{~mm}(1 / 2 ")$ | $55 \mathrm{~N} . \mathrm{m}$ |

Be careful that matters, such as wastes of sands, etc. shall not enter the pipe.
The standard pipe length is 5 m . If it is over 5 m , the function of the unit will be affected. If the pipe has to be lengthened, the refrigerant should be charged, according to $20 \mathrm{~g} / \mathrm{m}$. But the charge of refrigerant must be conducted by professional air conditioner engineer. Before adding additional refrigerant, perform air purging from the refrigerant pipes and indoor unit using a vacuum pump,then charge additional refrigerant.

## 3.Connection

## HSU-12HV03/R2

- Use the same method on indoor unit. Loosen the screws on terminal block and insert the plugs fully into terminal block, then tighten the screws.
- Insert the cable according to terminal number in the same manner as the indoor unit.
- If wiring is not correct, proper operation can not be carried out and controller may be damaged.
- Fix the cable with a clamp.


## 4.Attaching Drain-Elbow

- If the drain-elbow is used, please attach it as figure. (Note: Only for heat pump unit.)


Air Conditioner

## 6.Purging Method:To use vacuum pump



[^1]2.Please do not let other cooling medium, except specified one (R410A), or air enter into the cooling circulation system. Otherwise, there will be abnormal high pressure in the system to make it crack and lead to personal injuries.

## 1.Power Source Installation

- The power source must be exclusively used for air conditioner. (Over IOA)
- In the case of installing an air conditioner in a moist place, please install an earth leakage breaker.
- For installation in other places, use a circuit breaker as far as possible.


## 2.Cutting and Flaring Work of Piping

- Pipe cutting is carried out with a pipe cutter and burs must be removed.
- After inserting the flare nut, flaring work is carried out.

4.Flare pipe



## 3.On Drainage

Please install the drain hose so as to be downward slope without fail.
Please don't do the drainage as shown below.

It becomes high midway.

The end is immersed in water.

It waves.

The gap with the ground is too small
There is the bad smell

- Please pour water in the drain pan of the indoor unit, and confirm that drainage is carried out surely to outdoor.
- In case that the attached drain hose is in a room, please apply heat insulation to it without fail.


## Check for Installation and Test Run

- Please kindly explain to our customers how to operate through the instruction manual. Check Items for Test Run
$\square$ Put check mark $\checkmark$ in boxes
$\square$ Gas leak from pipe connecting?
$\square$ Is drainage securely carried out?
$\square$ Heat insulation of pipe connecting?
$\square$ Are the connecting wirings of indoor and outdoor firmly inserted to the terminal block?
$\square$ Is the connecting wiring of indoor and outdoor firmly fixed?
$\square$ Is the earth line securely connected?
$\square$ Is the indoor unit securely fixed? $\square$ Is power source voltage abided by the code?
$\square$ Is there any noise?
$\square$ Is the lamp normally lighting?
$\square$ Are cooling and heating (when in heat pump) performed normally?
$\square$ Is the operation of room temperature regulator normal?


## CIRCUIT AND WIRING DIAGRAM




WIRING DIAGRAM FOR OUTDOOR
HSU-07HV03/R2



WIRING DIAGRAM FOR OUTDOOR
HSU-09HV03/R2



WIRING DIAGRAM FOR OUTDOOR
HSU-12HV03/R2


## CIRCUIT DIAGRAM




WIRING DIAGRAM FOR OUTDOOR UNIT HSU-18HV03/R2



WIRING DIAGRAM FOR INDOOR UNIT HSU-22HV03/R2


WIRING DIAGRAM FOR OUTDOOR UNIT


# Sincere Forever 

Haier Group
Haier Industrial Park, No.1, Haier Road
266101, Qingdao, China
http://www.haier.com


[^0]:    1) The temperature sensor of inlet air doesn't work, and compressor starts (but subject to the limit of -minute delay excluding the first time), and high wind, cooling, and air door is open.The indoor fan motor runs, compressor relay and the one of outdoor fan motor is closed
    2) During test run:
[^1]:    CAUTION:
    1.If the refrigerant of the air conditioner leaks, it is necessary to discharge all the refrigerant. Vacuumize first, then charge the liquid refrigerant into air conditioner according to the amount marked on the name plate.

